25,688 research outputs found

    A task control architecture for autonomous robots

    Get PDF
    An architecture is presented for controlling robots that have multiple tasks, operate in dynamic domains, and require a fair degree of autonomy. The architecture is built on several layers of functionality, including a distributed communication layer, a behavior layer for querying sensors, expanding goals, and executing commands, and a task level for managing the temporal aspects of planning and achieving goals, coordinating tasks, allocating resources, monitoring, and recovering from errors. Application to a legged planetary rover and an indoor mobile manipulator is described

    Autonomous learning and reproduction of complex sequences: a multimodal architecture for bootstraping imitation games

    Get PDF
    This paper introduces a control architecture for the learning of complex sequence of gestures applied to autonomous robots. The architecture is designed to exploit the robot internal sensory-motor dynamics generated by visual, proprioceptive, and predictive informations in order to provide intuitive behaviors in the purpose of natural interactions with humans

    Modeling of the youBot in a serial link structure using twists and wrenches in a bond graph

    Get PDF
    We present a walk-through tutorial on the modeling of a complex robotic system, like the newly developed desktop mobile manipulator youBot developed by KUKA[5, 4]. The tutorial shows the design of models for typical robotic elements, done in a reusable object-oriented style. We employ an energy-based approach for modeling and its bondgraph notation to ensure encapsulation of functionality, extendability and reusability of each element of the model. The kinematic representation of mechanical elements is captured using screw theory. The modeling process is explained in two steps: first submodels of separate components are elaborated and next the model is constructed from these components

    COACHES Cooperative Autonomous Robots in Complex and Human Populated Environments

    Get PDF
    Public spaces in large cities are increasingly becoming complex and unwelcoming environments. Public spaces progressively become more hostile and unpleasant to use because of the overcrowding and complex information in signboards. It is in the interest of cities to make their public spaces easier to use, friendlier to visitors and safer to increasing elderly population and to citizens with disabilities. Meanwhile, we observe, in the last decade a tremendous progress in the development of robots in dynamic, complex and uncertain environments. The new challenge for the near future is to deploy a network of robots in public spaces to accomplish services that can help humans. Inspired by the aforementioned challenges, COACHES project addresses fundamental issues related to the design of a robust system of self-directed autonomous robots with high-level skills of environment modelling and scene understanding, distributed autonomous decision-making, short-term interacting with humans and robust and safe navigation in overcrowding spaces. To this end, COACHES will provide an integrated solution to new challenges on: (1) a knowledge-based representation of the environment, (2) human activities and needs estimation using Markov and Bayesian techniques, (3) distributed decision-making under uncertainty to collectively plan activities of assistance, guidance and delivery tasks using Decentralized Partially Observable Markov Decision Processes with efficient algorithms to improve their scalability and (4) a multi-modal and short-term human-robot interaction to exchange information and requests. COACHES project will provide a modular architecture to be integrated in real robots. We deploy COACHES at Caen city in a mall called “Rive de l’orne”. COACHES is a cooperative system consisting of ?xed cameras and the mobile robots. The ?xed cameras can do object detection, tracking and abnormal events detection (objects or behaviour). The robots combine these information with the ones perceived via their own sensor, to provide information through its multi-modal interface, guide people to their destinations, show tramway stations and transport goods for elderly people, etc.... The COACHES robots will use different modalities (speech and displayed information) to interact with the mall visitors, shopkeepers and mall managers. The project has enlisted an important an end-user (Caen la mer) providing the scenarios where the COACHES robots and systems will be deployed, and gather together universities with complementary competences from cognitive systems (SU), robust image/video processing (VUB, UNICAEN), and semantic scene analysis and understanding (VUB), Collective decision-making using decentralized partially observable Markov Decision Processes and multi-agent planning (UNICAEN, Sapienza), multi-modal and short-term human-robot interaction (Sapienza, UNICAEN
    corecore