9,465 research outputs found

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)

    Market-based frequency domain decomposition for automated mode shape estimation in wireless sensor networks

    Full text link
    Wireless sensing technology has paved the way for the cost-effective deployment of dense networks of sensing transducers within large structural systems. By leveraging the embedded computing power residing within networks of wireless sensors, it has been shown that powerful data analyses can be performed autonomously and in-network, without the need for central data processing. In this study, the power and flexibility of agent-based data processing in the wireless structural monitoring environment is illuminated through the application of market-based techniques to in-network mode shape estimation. Specifically, by drawing on previous wireless sensor work in both decentralized frequency domain decomposition (FDD) and market-based resource allocation, an algorithm derived from free-market principles is developed through which an agent-based wireless sensor network can autonomously and optimally shift emphasis between improving the accuracy of its mode shape calculations and reducing its dependency on any of the traditional limitations of wireless sensor networks: processing time, storage capacity, and power consumption. The developed algorithm is validated by estimating mode shapes using a network of wireless sensors deployed on the mezzanine balcony of Hill Auditorium located at the University of Michigan. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78217/1/415_ftp.pd

    Software-Defined Approach for Communication in Autonomous Transportation Systems

    Get PDF
    Autonomous driving technology offers a promising solution to reduce road accidents, traffic congestion, and fuel consumption. The management of vehicular networks is challenging as it demands mobility, location awareness, high reliability and low latency of data traffic. In this paper, we propose a novel communication architecture for vehicular network with 5G Mobile Networks and SDN technologies to support multiple core networks for autonomous vehicles and to tackle the potential challenges raised by the autonomous driving vehicles. Data requirements are evaluated for vehicular networks with respect to number of lanes and cluster size, to efficiently use the frequency and bandwidth. Also, the network latency requirements are analysed, which are mandatory constraints for all the applications where real time end-to-end communication is necessary. A test environment is also formulated to evaluate improvement in vehicular network using SDN-based approach over traditional core networks

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference
    corecore