21,113 research outputs found

    What impressions do users have after a ride in an automated shuttle? An interview study

    Get PDF
    In the future, automated shuttles may provide on-demand transport and serve as feeders to public transport systems. However, automated shuttles will only become widely used if they are accepted by the public. This paper presents results of an interview study with 30 users of an automated shuttle on the EUREF (Europäisches Energieforum) campus in Berlin-Schöneberg to obtain in-depth understanding of the acceptance of automated shuttles as feeders to public transport systems. From the interviews, we identified 340 quotes, which were classified into six categories: (1) expectations about the capabilities of the automated shuttle (10% of quotes), (2) evaluation of the shuttle performance (10%), (3) service quality (34%), (4) risk and benefit perception (15%), (5) travel purpose (25%), and (6) trust (6%). The quotes indicated that respondents had idealized expectations about the technological capabilities of the automated shuttle, which may have been fostered by the media. Respondents were positive about the idea of using automated shuttles as feeders to public transport systems but did not believe that the shuttle will allow them to engage in cognitively demanding activities such as working. Furthermore, 20% of respondents indicated to prefer supervision of shuttles via an external control room or steward on board over unsupervised automation. In conclusion, even though the current automated shuttle did not live up to the respondents’ expectations, respondents still perceived automated shuttles as a viable option for feeders to public transport systems.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Transport and PlanningHuman-Robot InteractionIntelligent VehiclesTransport and Plannin

    Autonomous Shuttle Implementation and Best Practices

    Get PDF
    When, where, and how autonomous shuttles are deployed can have significant safety, economic, and policy impacts on their operation and performance. This research analyzes data related to 120 existing deployments of autonomous shuttles, looking at safety, operational, economic, and policy-related issues. Analysis shows that autonomous shuttles would be an excellent supplement to public transportation. However, improvements to the vehicle and the infrastructure are needed before any permanent deployment. The study also analyzes the perceptions of practitioners, industry experts, and transportation system users toward autonomous shuttles. Principal Component Analysis (PCA) and Multiple Input Multiple Cause Structural Equation Modelling (SEM) approaches were adopted to analyze the perception data. The results from the PCA highlighted critical barriers to autonomous shuttle implementation, including underutilization measures, safety concerns, seating arrangements, reliability, data security, operational aspects, sensor technology, and lane use. The results from the SEM revealed that users’ willingness to use autonomous shuttles is influenced by their perceived safety, comfort, trust in autonomous shuttles, familiarity with autonomous shuttles, household income, age, and frequency of transit usage. A set of recommended best practices for deploying autonomous shuttles is proposed based on the insights from multiple case studies and the perceptions of practitioners and industry experts

    Quantitative constraint-based computational model of tumor-to-stroma coupling via lactate shuttle

    Get PDF
    Cancer cells utilize large amounts of ATP to sustain growth, relying primarily on non-oxidative, fermentative pathways for its production. In many types of cancers this leads, even in the presence of oxygen, to the secretion of carbon equivalents (usually in the form of lactate) in the cell’s surroundings, a feature known as the Warburg effect. While the molecular basis of this phenomenon are still to be elucidated, it is clear that the spilling of energy resources contributes to creating a peculiar microenvironment for tumors, possibly characterized by a degree of toxicity. This suggests that mechanisms for recycling the fermentation products (e.g. a lactate shuttle) may be active, effectively inducing a mutually beneficial metabolic coupling between aberrant and non-aberrant cells. Here we analyze this scenario through a large-scale in silico metabolic model of interacting human cells. By going beyond the cell-autonomous description, we show that elementary physico- chemical constraints indeed favor the establishment of such a coupling under very broad conditions. The characterization we obtained by tuning the aberrant cell’s demand for ATP, amino-acids and fatty acids and/or the imbalance in nutrient partitioning provides quantitative support to the idea that synergistic multi-cell effects play a central role in cancer sustainmen

    Mobility on Demand in the United States

    Get PDF
    The growth of shared mobility services and enabling technologies, such as smartphone apps, is contributing to the commodification and aggregation of transportation services. This chapter reviews terms and definitions related to Mobility on Demand (MOD) and Mobility as a Service (MaaS), the mobility marketplace, stakeholders, and enablers. This chapter also reviews the U.S. Department of Transportation’s MOD Sandbox Program, including common opportunities and challenges, partnerships, and case studies for employing on-demand mobility pilots and programs. The chapter concludes with a discussion of vehicle automation and on-demand mobility including pilot projects and the potential transformative impacts of shared automated vehicles on parking, land use, and the built environment

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Get PDF
    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations
    • …
    corecore