28 research outputs found

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    L'intertextualité dans les publications scientifiques

    No full text
    La base de données bibliographiques de l'IEEE contient un certain nombre de duplications avérées avec indication des originaux copiés. Ce corpus est utilisé pour tester une méthode d'attribution d'auteur. La combinaison de la distance intertextuelle avec la fenêtre glissante et diverses techniques de classification permet d'identifier ces duplications avec un risque d'erreur très faible. Cette expérience montre également que plusieurs facteurs brouillent l'identité de l'auteur scientifique, notamment des collectifs de chercheurs à géométrie variable et une forte dose d'intertextualité acceptée voire recherchée

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    Update propagation for peer-to-peer-based massively multi-user virtual environments

    Full text link
    Over the last decade Massively Multi-user Virtual Environments (MMVEs) have become an integral part of modern culture and business. Applications for these large-scale virtual environments range from gaming to business and scientific research. Some MMVEs reach a user base in the tens of millions and the total number of users is estimated in the billions. Despite this success, launching an MMVEs is still a risky proposition. This is in large part due to the high cost associated with setting up and maintaining the necessary server infrastructure. One way of reducing the costs of operating MMVEs is to switch their system architecture from the current client/server-based model to one based on peer-to-peer (P2P) technologies. This has the potential to significantly reduce the infrastructure costs of MMVEs, as users bring their own resources into the P2P system and servers are no longer required, thus decreasing expenses and market entry barriers. This thesis describes a scalable and low-latency update propagation system for P2P-based MMVEs. Update propagation refers to the exchange of information about changes in the virtual environment between users and is one of the key components of MMVEs. Thus, the described system represents a key step towards operating MMVEs as fully distributed peer-to-peer systems

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Optimising mobile laser scanning for underground mines

    Full text link
    Despite several technological advancements, underground mines are still largely relied on visual inspections or discretely placed direct-contact measurement sensors for routine monitoring. Such approaches are manual and often yield inconclusive, unreliable and unscalable results besides exposing mine personnel to field hazards. Mobile laser scanning (MLS) promises an automated approach that can generate comprehensive information by accurately capturing large-scale 3D data. Currently, the application of MLS has relatively remained limited in mining due to challenges in the post-registration of scans and the unavailability of suitable processing algorithms to provide a fully automated mapping solution. Additionally, constraints such as the absence of a spatial positioning network and the deficiency of distinguishable features in underground mining spaces pose challenges in mobile mapping. This thesis aims to address these challenges in mine inspections by optimising different aspects of MLS: (1) collection of large-scale registered point cloud scans of underground environments, (2) geological mapping of structural discontinuities, and (3) inspection of structural support features. Firstly, a spatial positioning network was designed using novel three-dimensional unique identifiers (3DUID) tags and a 3D registration workflow (3DReG), to accurately obtain georeferenced and coregistered point cloud scans, enabling multi-temporal mapping. Secondly, two fully automated methods were developed for mapping structural discontinuities from point cloud scans – clustering on local point descriptors (CLPD) and amplitude and phase decomposition (APD). These methods were tested on both surface and underground rock mass for discontinuity characterisation and kinematic analysis of the failure types. The developed algorithms significantly outperformed existing approaches, including the conventional method of compass and tape measurements. Finally, different machine learning approaches were used to automate the recognition of structural support features, i.e. roof bolts from point clouds, in a computationally efficient manner. Roof bolts being mapped from a scanned point cloud provided an insight into their installation pattern, which underpinned the applicability of laser scanning to inspect roof supports rapidly. Overall, the outcomes of this study lead to reduced human involvement in field assessments of underground mines using MLS, demonstrating its potential for routine multi-temporal monitoring

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    corecore