447 research outputs found

    Design and Implementation of a Byzantine Fault Tolerance Framework for Web Services

    Get PDF
    Many Web services are expected to run with high degree of security and dependability. To achieve this goal, it is essential to use a Web services compatible framework that tolerates not only crash faults, but Byzantine faults as well, due to the untrusted communication environment in which the Web services operate. In this paper, we describe the design and implementation of such a framework, called BFT-WS. BFT-WS is designed to operate on top of the standard SOAP messaging framework for maximum interoperability. It is implemented as a pluggable module within the Axis2 architecture, as such, it requires minimum changes to the Web applications. The core fault tolerance mechanisms used in BFT-WS are based on the well-known Castro and Liskov’s BFT algorithm for optimal efficiency. Our performance measurements confirm that BFT-WS incurs only moderate runtime overhead considering the complexity of the mechanisms

    Application Aware for Byzantine Fault Tolerance

    Get PDF
    Driven by the need for higher reliability of many distributed systems, various replication-based fault tolerance technologies have been widely studied. A prominent technology is Byzantine fault tolerance (BFT). BFT can help achieve high availability and trustworthiness by ensuring replica consistency despite the presence of hardware failures and malicious faults on a small portion of the replicas. However, most state-of-the-art BFT algorithms are designed for generic stateful applications that require the total ordering of all incoming requests and the sequential execution of such requests. In this dissertation research, we recognize that a straightforward application of existing BFT algorithms is often inappropriate for many practical systems: (1) not all incoming requests must be executed sequentially according to some total order and doing so would incur unnecessary (and often prohibitively high) runtime overhead and (2) a sequential execution of all incoming requests might violate the application semantics and might result in deadlocks for some applications. In the past four and half years of my dissertation research, I have focused on designing lightweight BFT solutions for a number of Web services applications (including a shopping cart application, an event stream processing application, Web service business activities (WS-BA), and Web service atomic transactions (WS-AT)) by exploiting application semantics. The main research challenge is to identify how to minimize the use of Byzantine agreement steps and enable concurrent execution of requests that are commutable or unrelated. We have shown that the runtime overhead can be significantly reduced by adopting our lightweight solutions. One limitation for our solutions is that it requires intimate knowledge on the application design and implementation, which may be expensive and error-prone to design such BFT solutions on complex applications. Recognizing this limitation, we investigated the use of Conflict-free Replicated Data Types (CRDTs) to

    Application Aware for Byzantine Fault Tolerance

    Get PDF
    Driven by the need for higher reliability of many distributed systems, various replication-based fault tolerance technologies have been widely studied. A prominent technology is Byzantine fault tolerance (BFT). BFT can help achieve high availability and trustworthiness by ensuring replica consistency despite the presence of hardware failures and malicious faults on a small portion of the replicas. However, most state-of-the-art BFT algorithms are designed for generic stateful applications that require the total ordering of all incoming requests and the sequential execution of such requests. In this dissertation research, we recognize that a straightforward application of existing BFT algorithms is often inappropriate for many practical systems: (1) not all incoming requests must be executed sequentially according to some total order and doing so would incur unnecessary (and often prohibitively high) runtime overhead and (2) a sequential execution of all incoming requests might violate the application semantics and might result in deadlocks for some applications. In the past four and half years of my dissertation research, I have focused on designing lightweight BFT solutions for a number of Web services applications (including a shopping cart application, an event stream processing application, Web service business activities (WS-BA), and Web service atomic transactions (WS-AT)) by exploiting application semantics. The main research challenge is to identify how to minimize the use of Byzantine agreement steps and enable concurrent execution of requests that are commutable or unrelated. We have shown that the runtime overhead can be significantly reduced by adopting our lightweight solutions. One limitation for our solutions is that it requires intimate knowledge on the application design and implementation, which may be expensive and error-prone to design such BFT solutions on complex applications. Recognizing this limitation, we investigated the use of Conflict-free Replicated Data Types (CRDTs) to

    A Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous Spot Instances

    Full text link
    Cloud providers sell their idle capacity on markets through an auction-like mechanism to increase their return on investment. The instances sold in this way are called spot instances. In spite that spot instances are usually 90% cheaper than on-demand instances, they can be terminated by provider when their bidding prices are lower than market prices. Thus, they are largely used to provision fault-tolerant applications only. In this paper, we explore how to utilize spot instances to provision web applications, which are usually considered availability-critical. The idea is to take advantage of differences in price among various types of spot instances to reach both high availability and significant cost saving. We first propose a fault-tolerant model for web applications provisioned by spot instances. Based on that, we devise novel auto-scaling polices for hourly billed cloud markets. We implemented the proposed model and policies both on a simulation testbed for repeatable validation and Amazon EC2. The experiments on the simulation testbed and the real platform against the benchmarks show that the proposed approach can greatly reduce resource cost and still achieve satisfactory Quality of Service (QoS) in terms of response time and availability

    Self-management for large-scale distributed systems

    Get PDF
    Autonomic computing aims at making computing systems self-managing by using autonomic managers in order to reduce obstacles caused by management complexity. This thesis presents results of research on self-management for large-scale distributed systems. This research was motivated by the increasing complexity of computing systems and their management. In the first part, we present our platform, called Niche, for programming self-managing component-based distributed applications. In our work on Niche, we have faced and addressed the following four challenges in achieving self-management in a dynamic environment characterized by volatile resources and high churn: resource discovery, robust and efficient sensing and actuation, management bottleneck, and scale. We present results of our research on addressing the above challenges. Niche implements the autonomic computing architecture, proposed by IBM, in a fully decentralized way. Niche supports a network-transparent view of the system architecture simplifying the design of distributed self-management. Niche provides a concise and expressive API for self-management. The implementation of the platform relies on the scalability and robustness of structured overlay networks. We proceed by presenting a methodology for designing the management part of a distributed self-managing application. We define design steps that include partitioning of management functions and orchestration of multiple autonomic managers. In the second part, we discuss robustness of management and data consistency, which are necessary in a distributed system. Dealing with the effect of churn on management increases the complexity of the management logic and thus makes its development time consuming and error prone. We propose the abstraction of Robust Management Elements, which are able to heal themselves under continuous churn. Our approach is based on replicating a management element using finite state machine replication with a reconfigurable replica set. Our algorithm automates the reconfiguration (migration) of the replica set in order to tolerate continuous churn. For data consistency, we propose a majority-based distributed key-value store supporting multiple consistency levels that is based on a peer-to-peer network. The store enables the tradeoff between high availability and data consistency. Using majority allows avoiding potential drawbacks of a master-based consistency control, namely, a single-point of failure and a potential performance bottleneck. In the third part, we investigate self-management for Cloud-based storage systems with the focus on elasticity control using elements of control theory and machine learning. We have conducted research on a number of different designs of an elasticity controller, including a State-Space feedback controller and a controller that combines feedback and feedforward control. We describe our experience in designing an elasticity controller for a Cloud-based key-value store using state-space model that enables to trade-off performance for cost. We describe the steps in designing an elasticity controller. We continue by presenting the design and evaluation of ElastMan, an elasticity controller for Cloud-based elastic key-value stores that combines feedforward and feedback control

    Resilient and Trustworthy Dynamic Data-driven Application Systems (DDDAS) Services for Crisis Management Environments

    Get PDF
    Future crisis management systems needresilient and trustworthy infrastructures to quickly develop reliable applications and processes, andensure end-to-end security, trust, and privacy. Due to the multiplicity and diversity of involved actors, volumes of data, and heterogeneity of shared information;crisis management systems tend to be highly vulnerable and subjectto unforeseen incidents. As a result, the dependability of crisis management systems can be at risk. This paper presents a cloud-based resilient and trustworthy infrastructure (known as rDaaS) to quickly develop secure crisis management systems. The rDaaS integrates the Dynamic Data-Driven Application Systems (DDDAS) paradigm into a service-oriented architecture over cloud technology and provides a set of resilient DDDAS-As-A Service (rDaaS) components to build secure and trusted adaptable crisis processes. The rDaaS also ensures resilience and security by obfuscating the execution environment and applying Behavior Software Encryption and Moving Technique Defense. A simulation environment for a nuclear plant crisis management case study is illustrated to build resilient and trusted crisis response processes

    Application Aware for Byzantine Fault Tolerance

    Get PDF
    Driven by the need for higher reliability of many distributed systems, various replication-based fault tolerance technologies have been widely studied. A prominent technology is Byzantine fault tolerance (BFT). BFT can help achieve high availability and trustworthiness by ensuring replica consistency despite the presence of hardware failures and malicious faults on a small portion of the replicas. However, most state-of-the-art BFT algorithms are designed for generic stateful applications that require the total ordering of all incoming requests and the sequential execution of such requests. In this dissertation research, we recognize that a straightforward application of existing BFT algorithms is often inappropriate for many practical systems: (1) not all incoming requests must be executed sequentially according to some total order and doing so would incur unnecessary (and often prohibitively high) runtime overhead and (2) a sequential execution of all incoming requests might violate the application semantics and might result in deadlocks for some applications. In the past four and half years of my dissertation research, I have focused on designing lightweight BFT solutions for a number of Web services applications (including a shopping cart application, an event stream processing application, Web service business activities (WS-BA), and Web service atomic transactions (WS-AT)) by exploiting application semantics. The main research challenge is to identify how to minimize the use of Byzantine agreement steps and enable concurrent execution of requests that are commutable or unrelated. We have shown that the runtime overhead can be significantly reduced by adopting our lightweight solutions. One limitation for our solutions is that it requires intimate knowledge on the application design and implementation, which may be expensive and error-prone to design such BFT solutions on complex applications. Recognizing this limitation, we investigated the use of Conflict-free Replicated Data Types (CRDTs) to

    Application Agreement and Integration Services

    Get PDF
    Application agreement and integration services are required by distributed, fault-tolerant, safety critical systems to assure required performance. An analysis of distributed and hierarchical agreement strategies are developed against the backdrop of observed agreement failures in fielded systems. The documented work was performed under NASA Task Order NNL10AB32T, Validation And Verification of Safety-Critical Integrated Distributed Systems Area 2. This document is intended to satisfy the requirements for deliverable 5.2.11 under Task 4.2.2.3. This report discusses the challenges of maintaining application agreement and integration services. A literature search is presented that documents previous work in the area of replica determinism. Sources of non-deterministic behavior are identified and examples are presented where system level agreement failed to be achieved. We then explore how TTEthernet services can be extended to supply some interesting application agreement frameworks. This document assumes that the reader is familiar with the TTEthernet protocol. The reader is advised to read the TTEthernet protocol standard [1] before reading this document. This document does not re-iterate the content of the standard

    A model-based approach for automatic recovery from memory leaks in enterprise applications

    Get PDF
    Large-scale distributed computing systems such as data centers are hosted on heterogeneous and networked servers that execute in a dynamic and uncertain operating environment, caused by factors such as time-varying user workload and various failures. Therefore, achieving stringent quality-of-service goals is a challenging task, requiring a comprehensive approach to performance control, fault diagnosis, and failure recovery. This work presents a model-based approach for fault management, which integrates limited lookahead control (LLC), diagnosis, and fault-tolerance concepts that: (1) enables systems to adapt to environment variations, (2) maintains the availability and reliability of the system, (3) facilitates system recovery from failures. We focused on memory leak errors in this thesis. A characterization function is designed to detect memory leaks. Then, a LLC is applied to enable the computing system to adapt efficiently to variations in the workload, and to enable the system recover from memory leaks and maintain functionality
    • …
    corecore