57,243 research outputs found
Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped
Controllers in robotics often consist of expert-designed heuristics, which
can be hard to tune in higher dimensions. It is typical to use simulation to
learn these parameters, but controllers learned in simulation often don't
transfer to hardware. This necessitates optimization directly on hardware.
However, collecting data on hardware can be expensive. This has led to a recent
interest in adapting data-efficient learning techniques to robotics. One
popular method is Bayesian Optimization (BO), a sample-efficient black-box
optimization scheme, but its performance typically degrades in higher
dimensions. We aim to overcome this problem by incorporating domain knowledge
to reduce dimensionality in a meaningful way, with a focus on bipedal
locomotion. In previous work, we proposed a transformation based on knowledge
of human walking that projected a 16-dimensional controller to a 1-dimensional
space. In simulation, this showed enhanced sample efficiency when optimizing
human-inspired neuromuscular walking controllers on a humanoid model. In this
paper, we present a generalized feature transform applicable to non-humanoid
robot morphologies and evaluate it on the ATRIAS bipedal robot -- in simulation
and on hardware. We present three different walking controllers; two are
evaluated on the real robot. Our results show that this feature transform
captures important aspects of walking and accelerates learning on hardware and
simulation, as compared to traditional BO.Comment: 8 pages, submitted to IEEE International Conference on Robotics and
Automation 201
Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed by Simulation
We develop an approach that benefits from large simulated datasets and takes
full advantage of the limited online data that is most relevant. We propose a
variant of Bayesian optimization that alternates between using informed and
uninformed kernels. With this Bernoulli Alternation Kernel we ensure that
discrepancies between simulation and reality do not hinder adapting robot
control policies online. The proposed approach is applied to a challenging
real-world problem of task-oriented grasping with novel objects. Our further
contribution is a neural network architecture and training pipeline that use
experience from grasping objects in simulation to learn grasp stability scores.
We learn task scores from a labeled dataset with a convolutional network, which
is used to construct an informed kernel for our variant of Bayesian
optimization. Experiments on an ABB Yumi robot with real sensor data
demonstrate success of our approach, despite the challenge of fulfilling task
requirements and high uncertainty over physical properties of objects.Comment: To appear in 2nd Conference on Robot Learning (CoRL) 201
Automation of NLO processes and decays and POWHEG matching in WHIZARD
We give a status report on the automation of next-to-leading order processes
within the Monte Carlo event generator WHIZARD, using GoSam and OpenLoops as
provider for one-loop matrix elements. To deal with divergences, WHIZARD uses
automated FKS subtraction, and the phase space for singular regions is
generated automatically. NLO examples for both scattering and decay processes
with a focus on e+e- processes are shown. Also, first NLO-studies of
observables for collisions of polarized leptons beams, e.g. at the ILC, will be
presented. Furthermore, the automatic matching of the fixed-order NLO
amplitudes with emissions from the parton shower within the POWHEG formalism
inside WHIZARD will be discussed. We also present results for top pairs at
threshold in lepton collisions, including matching between a resummed threshold
calculation and fixed-order NLO. This allows the investigation of more
exclusive differential observables.Comment: 5 pages, 3 figures, Talk presented at ACAT 2016 at UTFSM,
Valpara\'iso, Chil
Fast, non-monte-carlo estimation of transient performance variation due to device mismatch
This paper describes an efficient way of simulating the effects of device random mismatch on circuit transient characteristics, such as variations in delay or in frequency. The proposed method models DC random offsets as equivalent AC pseudo-noises and leverages the fast, linear periodically time-varying (LPTV) noise analysis available from RF circuit simulators. Therefore, the method can be considered as an extension to DC match analysis and offers a large speed-up compared to the traditional Monte-Carlo analysis. Although the assumed linear perturbation model is valid only for small variations, it enables easy ways to estimate correlations among variations and identify the most sensitive design parameters to mismatch, all at no additional simulation cost. Three benchmarks measuring the variations in the input offset voltage of a clocked comparator, the delay of a logic path, and the frequency of an oscillator demonstrate the speed improvement of about 100-1000x compared to a 1000-point Monte-Carlo method
Driving automation: Learning from aviation about design philosophies
Full vehicle automation is predicted to be on British roads by 2030 (Walker et al., 2001). However, experience in aviation gives us some cause for concern for the 'drive-by-wire' car (Stanton and Marsden, 1996). Two different philosophies have emerged in aviation for dealing with the human factor: hard vs. soft automation, depending on whether the computer or the pilot has ultimate authority (Hughes and Dornheim, 1995). This paper speculates whether hard or soft automation provides the best solution for road vehicles, and considers an alternative design philosophy in vehicles of the future based on coordination and cooperation
- …
