1 research outputs found

    Automating computational proofs for public-key-based key exchange

    Get PDF
    We present an approach to automating computationally sound proofs of key exchange protocols based on public-key encryption. We show that satisfying the property called occultness in the Dolev-Yao model guarantees the security of a related key exchange protocol in a simple computational model. Security in this simpler model has been shown to imply security in a Bellare {Rogaway-like model. Furthermore, the occultness in the Dolev-Yao model can be searched automatically by a mechanisable procedure. Thus automated proofs for key exchange protocols in the computational model can be achieved. We illustrate the method using the well-known Lowe-Needham-Schroeder protocol
    corecore