3 research outputs found

    An automatic approach to weighted subject indexing – An empirical study in the biomedical domain

    Get PDF
    Subject indexing is an intellectually intensive process that has many inherent uncertainties. Existing manual subject indexing systems generally produce binary outcomes for whether or not to assign an indexing term. This does not sufficiently reflect the extent to which the indexing terms are associated with the documents. On the other hand, the idea of probabilistic or weighted indexing was proposed a long time ago and has seen success in capturing uncertainties in the automatic indexing process. One hurdle to overcome in implementing weighted indexing in manual subject indexing systems is the practical burden that could be added to the already intensive indexing process. This study proposes a method to infer automatically the associations between subject terms and documents through text mining. By uncovering the connections between MeSH descriptors and document text, we are able to derive the weights of MeSH descriptors manually assigned to documents. Our initial results suggest that the inference method is feasible and promising. The study has practical implications for improving subject indexing practice and providing better support for information retrieval.Ye

    Mining document, concept, and term associations for effective biomedical retrieval - Introducing MeSH-enhanced retrieval models

    Get PDF
    Manually assigned subject terms, such as Medical Subject Headings (MeSH) in the health domain, describe the concepts or topics of a document. Existing information retrieval models do not take full advantage of such information. In this paper, we propose two MeSH-enhanced (ME) retrieval models that integrate the concept layer (i.e. MeSH) into the language modeling framework to improve retrieval performance. The new models quantify associations between documents and their assigned concepts to construct conceptual representations for the documents, and mine associations between concepts and terms to construct generative concept models. The two ME models reconstruct two essential estimation processes of the relevance model (Lavrenko and Croft 2001) by incorporating the document-concept and the concept-term associations. More specifically, in Model 1, language models of the pseudo-feedback documents are enriched by their assigned concepts. In Model 2, concepts that are related to users’ queries are first identified, and then used to reweight the pseudo-feedback documents according to the document-concept associations. Experiments carried out on two standard test collections show that the ME models outperformed the query likelihood model, the relevance model (RM3), and an earlier ME model. A detailed case analysis provides insight into how and why the new models improve/worsen retrieval performance. Implications and limitations of the study are discussed. This study provides new ways to formally incorporate semantic annotations, such as subject terms, into retrieval models. The findings of this study suggest that integrating the concept layer into retrieval models can further improve the performance over the current state-of-the-art models.Ye
    corecore