12,148 research outputs found

    On interoperability and conformance assessment in service composition

    Get PDF
    The process of composing a service from other services typically involves multiple models. These models may represent the service from distinct perspectives, e.g., to model the different roles of systems involved in the service, and at distinct abstraction levels, e.g., to model the serviceā€™s capability, interface or the orchestration that implements the service. The consistency among these models needs to be maintained in order to guarantee the correctness of the composition process. Two types of consistency relations are distinguished: interoperability, which concerns the ability of different roles to interoperate, and conformance, which concerns the correct implementation of an abstract model by a more concrete model. This paper discusses the need for and use of techniques to assess interoperability and conformance in a service composition process. The paper shows how these consistency relations can be described and analysed using concepts from the COSMO framework. Examples are presented to illustrate how interoperability and conformance can be assessed

    Business Level Service-Oriented Enterprise Application Integration

    Get PDF
    In this paper we propose a new approach for service-oriented enterprise application integration (EAI). Unlike current EAI solutions, which mainly focus on technological aspects, our approach allows business domain experts to get more involved in the integration process. First, we provide a technique for modeling application services at a sufficiently high level of abstraction for business experts to work with. Next, these business experts can model the orchestration as well as the information mappings that are required to achieve their integration goals. Our mediation framework then takes over and realizes the integration solution by transforming these models to existing service orchestration technology

    SOA-Driven Business-Software Alignment

    Get PDF
    The alignment of business processes and their supporting application software is a major concern during the initial software design phases. This paper proposes a design approach addressing this problem of business-software alignment. The approach takes an initial business model as a basis in deriving refined models that target a service-oriented software implementation. The approach explicitly identifies a software modeling level at which software modules are represented as services in a technology-platformindependent way. This model-driven service-oriented approach has the following properties: (i) there is a forced alignment (consistency) between business processes and supporting applications; (ii) changes in the business environment can be traced to the application and vice versa, via model relationships; (iii) the software modules modeled as services have a high degree of autonomy; (iv) migration to new technology platforms can be supported through the platform independent software model

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
    • ā€¦
    corecore