1,179 research outputs found

    Automatic normal orientation in point clouds of building interiors

    Full text link
    Orienting surface normals correctly and consistently is a fundamental problem in geometry processing. Applications such as visualization, feature detection, and geometry reconstruction often rely on the availability of correctly oriented normals. Many existing approaches for automatic orientation of normals on meshes or point clouds make severe assumptions on the input data or the topology of the underlying object which are not applicable to real-world measurements of urban scenes. In contrast, our approach is specifically tailored to the challenging case of unstructured indoor point cloud scans of multi-story, multi-room buildings. We evaluate the correctness and speed of our approach on multiple real-world point cloud datasets

    Surveying and Three-Dimensional Modeling for Preservation and Structural Analysis of Cultural Heritage

    Get PDF
    Dense point clouds can be used for three important steps in structural analysis, in the field of cultural heritage, regardless of which instrument it was used for acquisition data. Firstly, they allow deriving the geometric part of a finite element (FE) model automatically or semi-automatically. User input is mainly required to complement invisible parts and boundaries of the structure, and to assign meaningful approximate physical parameters. Secondly, FE model obtained from point clouds can be used to estimate better and more precise parameters of the structural analysis, i.e., to train the FE model. Finally, the definition of a correct Level of Detail about the three-dimensional model, deriving from the initial point cloud, can be used to define the limit beyond which the structural analysis is compromised, or anyway less precise. In this work of research, this will be demonstrated using three different case studies of buildings, consisting mainly of masonry, measured through terrestrial laser scanning and photogrammetric acquisitions. This approach is not a typical study for geomatics analysis, but its challenges allow studying benefits and limitations. The results and the proposed approaches could represent a step towards a multidisciplinary approach where Geomatics can play a critical role in the monitoring and civil engineering field. Furthermore, through a geometrical reconstruction, different analyses and comparisons are possible, in order to evaluate how the numerical model is accurate. In fact, the discrepancies between the different results allow to evaluate how, from a geometric and simplified modeling, important details can be lost. This causes, for example, modifications in terms of mass and volume of the structure

    Towards building information modelling for existing structures

    Get PDF
    The transformation of cities from the industrial age (unsustainable) to the knowledge age (sustainable) is essentially a ‘whole life cycle’ process consisting of; planning, development, operation, reuse and renewal. During this transformation, a multi-disciplinary knowledge base, created from studies and research about the built environment aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc is critical. Although there are a growing number of applications of 3D VR modelling applications, some built environment applications such as disaster management, environmental simulations, computer aided architectural design and planning require more sophisticated models beyond 3D graphical visualization such as multifunctional, interoperable, intelligent, and multi-representational. Advanced digital mapping technologies such as 3D laser scanner technologies can be are enablers for effective e-planning, consultation and communication of users’ views during the planning, design, construction and lifecycle process of the built environment. For example, the 3D laser scanner enables digital documentation of buildings, sites and physical objects for reconstruction and restoration. It also facilitates the creation of educational resources within the built environment, as well as the reconstruction of the built environment. These technologies can be used to drive the productivity gains by promoting a free-flow of information between departments, divisions, offices, and sites; and between themselves, their contractors and partners when the data captured via those technologies are processed and modelled into BIM (Building Information Modelling). The use of these technologies is key enablers to the creation of new approaches to the ‘Whole Life Cycle’ process within the built and human environment for the 21st century. The paper describes the research towards Building Information Modelling for existing structures via the point cloud data captured by the 3D laser scanner technology. A case study building is elaborated to demonstrate how to produce 3D CAD models and BIM models of existing structures based on designated technique

    3D SCENE RECONSTRUCTION SYSTEM BASED ON A MOBILE DEVICE

    Get PDF
    Augmented reality (AR) and virtual reality (VR) applications can take advantage of efficient digitalization of real objects as reconstructed elements can allow users a better connection between real and virtual worlds than using pre-set 3D CAD models. Technology advances contribute to the spread of AR and VR technologies, which are always more diffuse and popular. On the other hand, the design and implementation of virtual and extended worlds is still an open problem; affordable and robust solutions to support 3D object digitalization is still missing. This work proposes a reconstruction system that allows users to receive a 3D CAD model starting from a single image of the object to be digitalized and reconstructed. A smartphone can be used to take a photo of the object under analysis and a remote server performs the reconstruction process by exploiting a pipeline of three Deep Learning methods. Accuracy and robustness of the system have been assessed by several experiments and the main outcomes show how the proposed solution has a comparable accuracy (chamfer distance) with the state-of-the-art methods for 3D object reconstruction

    A FLEXIBLE METHODOLOGY FOR OUTDOOR/INDOOR BUILDING RECONSTRUCTION FROM OCCLUDED POINT CLOUDS

    Get PDF
    Terrestrial Laser Scanning data are increasingly used in building survey not only in cultural heritage domain but also for as-built modelling of large and medium size civil structures. However, raw point clouds derived from laser scanning generally not directly ready for the generation of such models. A time-consuming manual modelling phase has to be taken into account. In addition the large presence of occlusion and clutter may turn out in low-quality building models when state-of-the-art automatic modelling procedures are applied. This paper presents an automated procedure to convert raw point clouds into semantically-enriched building models. The developed method mainly focuses on a geometrical complexity typical of modern buildings with clear prevalence of planar features A characteristic of this methodology is the possibility to work with outdoor and indoor building environments. In order to operate under severe occlusions and clutter a couple of completion algorithms were designed to generate a plausible and reliable model. Finally, some examples of the developed modelling procedure are presented and discussed
    • 

    corecore