1,227 research outputs found

    Semantic Representation and Inference for NLP

    Full text link
    Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).Comment: PhD thesis, the University of Copenhage

    Deep Learning for Political Science

    Get PDF
    Political science, and social science in general, have traditionally been using computational methods to study areas such as voting behavior, policy making, international conflict, and international development. More recently, increasingly available quantities of data are being combined with improved algorithms and affordable computational resources to predict, learn, and discover new insights from data that is large in volume and variety. New developments in the areas of machine learning, deep learning, natural language processing (NLP), and, more generally, artificial intelligence (AI) are opening up new opportunities for testing theories and evaluating the impact of interventions and programs in a more dynamic and effective way. Applications using large volumes of structured and unstructured data are becoming common in government and industry, and increasingly also in social science research. This chapter offers an introduction to such methods drawing examples from political science. Focusing on the areas where the strengths of the methods coincide with challenges in these fields, the chapter first presents an introduction to AI and its core technology - machine learning, with its rapidly developing subfield of deep learning. The discussion of deep neural networks is illustrated with the NLP tasks that are relevant to political science. The latest advances in deep learning methods for NLP are also reviewed, together with their potential for improving information extraction and pattern recognition from political science texts

    PersoNER: Persian named-entity recognition

    Full text link
    © 1963-2018 ACL. Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network
    • …
    corecore