11 research outputs found

    Accelerated Object Tracking with Local Binary Features

    Get PDF
    Multi-object tracking is a problem with wide application in modern computing. Object tracking is leveraged in areas such as human computer interaction, autonomous vehicle navigation, panorama generation, as well as countless other robotic applications. Several trackers have demonstrated favorable results for tracking of single objects. However, modern object trackers must make significant tradeoffs in order to accommodate multiple objects while maintaining real-time performance. These tradeoffs include sacrifices in robustness and accuracy that adversely affect the results. This thesis details the design and multiple implementations of an object tracker that is focused on computational efficiency. The computational efficiency of the tracker is achieved through use of local binary descriptors in a template matching approach. Candidate templates are matched to a dictionary composed of both static and dynamic templates to allow for variation in the appearance of the object while minimizing the potential for drift in the tracker. Locality constraints have been used to reduce tracking jitter. Due to the significant promise for parallelization, the tracking algorithm was implemented on the Graphics Processing Unit (GPU) using the CUDA API. The tracker\u27s efficiency also led to its implantation on a mobile platform as one of the mobile trackers that can accurately track at faster than realtime speed. Benchmarks were performed to compare the proposed tracker to state of the art trackers on a wide range of standard test videos. The tracker implemented in this work has demonstrated a higher degree of accuracy while operating several orders of magnitude faster

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    Discriminative latent variable models for visual recognition

    Get PDF
    Visual Recognition is a central problem in computer vision, and it has numerous potential applications in many dierent elds, such as robotics, human computer interaction, and entertainment. In this dissertation, we propose two discriminative latent variable models for handling challenging visual recognition problems. In particular, we use latent variables to capture and model various prior knowledge in the training data. In the rst model, we address the problem of recognizing human actions from still images. We jointly consider both poses and actions in a unied framework, and treat human poses as latent variables. The learning of this model follows the framework of latent SVM. Secondly, we propose another latent variable model to address the problem of automated tag learning on YouTube videos. In particular, we address the semantic variations (sub-tags) of the videos which have the same tag. In the model, each video is assumed to be associated with a sub-tag label, and we treat this sub-tag label as latent information. This model is trained using a latent learning framework based on LogitBoost, which jointly considers both the latent sub-tag label and the tag label. Moreover, we propose a novel discriminative latent learning framework, kernel latent SVM, which combines the benet of latent SVM and kernel methods. The framework of kernel latent SVM is general enough to be applied in many applications of visual recognition. It is also able to handle complex latent variables with interdependent structures using composite kernels

    Deep Representation Learning with Limited Data for Biomedical Image Synthesis, Segmentation, and Detection

    Get PDF
    Biomedical imaging requires accurate expert annotation and interpretation that can aid medical staff and clinicians in automating differential diagnosis and solving underlying health conditions. With the advent of Deep learning, it has become a standard for reaching expert-level performance in non-invasive biomedical imaging tasks by training with large image datasets. However, with the need for large publicly available datasets, training a deep learning model to learn intrinsic representations becomes harder. Representation learning with limited data has introduced new learning techniques, such as Generative Adversarial Networks, Semi-supervised Learning, and Self-supervised Learning, that can be applied to various biomedical applications. For example, ophthalmologists use color funduscopy (CF) and fluorescein angiography (FA) to diagnose retinal degenerative diseases. However, fluorescein angiography requires injecting a dye, which can create adverse reactions in the patients. So, to alleviate this, a non-invasive technique needs to be developed that can translate fluorescein angiography from fundus images. Similarly, color funduscopy and optical coherence tomography (OCT) are also utilized to semantically segment the vasculature and fluid build-up in spatial and volumetric retinal imaging, which can help with the future prognosis of diseases. Although many automated techniques have been proposed for medical image segmentation, the main drawback is the model's precision in pixel-wise predictions. Another critical challenge in the biomedical imaging field is accurately segmenting and quantifying dynamic behaviors of calcium signals in cells. Calcium imaging is a widely utilized approach to studying subcellular calcium activity and cell function; however, large datasets have yielded a profound need for fast, accurate, and standardized analyses of calcium signals. For example, image sequences from calcium signals in colonic pacemaker cells ICC (Interstitial cells of Cajal) suffer from motion artifacts and high periodic and sensor noise, making it difficult to accurately segment and quantify calcium signal events. Moreover, it is time-consuming and tedious to annotate such a large volume of calcium image stacks or videos and extract their associated spatiotemporal maps. To address these problems, we propose various deep representation learning architectures that utilize limited labels and annotations to address the critical challenges in these biomedical applications. To this end, we detail our proposed semi-supervised, generative adversarial networks and transformer-based architectures for individual learning tasks such as retinal image-to-image translation, vessel and fluid segmentation from fundus and OCT images, breast micro-mass segmentation, and sub-cellular calcium events tracking from videos and spatiotemporal map quantification. We also illustrate two multi-modal multi-task learning frameworks with applications that can be extended to other domains of biomedical applications. The main idea is to incorporate each of these as individual modules to our proposed multi-modal frameworks to solve the existing challenges with 1) Fluorescein angiography synthesis, 2) Retinal vessel and fluid segmentation, 3) Breast micro-mass segmentation, and 4) Dynamic quantification of calcium imaging datasets

    Improving the utilization of training samples in visual recognition

    Full text link
    Recognition is a fundamental computer vision problem, in which training samples are used to learn models, that then assign labels to test samples. The utilization of training samples is of vital importance to visual recognition, which can be addressed by increasing the capability of the description methods and the model learning methods. Two visual recognition tasks namely object detection and action recognition and are considered in this thesis. Active learning utilizes selected subsets of the training dataset as training samples. Active learning methods select the most informative training samples in each iteration, and therefore require fewer training samples to attain comparable performance to passive learning methods. In this thesis, an active learning method for object detection that exploits the distribution of training samples is presented. Experiments show that the proposed method outperforms a passive learning method and a simple margin active learning method. Weakly supervised learning facilitates learning on training samples with weak labels. In this thesis, a weakly supervised object detection method is proposed to utilize training samples with probabilistic labels. Base detectors are used to create object proposals from training samples with weak labels. Then the object proposals are assigned estimated probabilistic labels. A Generalized Hough Transform based object detector is extended to utilize the object proposals with probabilistic labels as training samples. The proposed method is shown to outperform both a comparison method that assigns strong labels to object proposals, and a weakly supervised deformable part-based models method. The proposed method also attains comparable performance to supervised learning methods. Increasing the capability of the description method can improve the utilization of training samples. In this thesis, temporal pyramid histograms are proposed to address the problem of missing temporal information in the classical bag of features description method used in action recognition. Experiments show that the proposed description method outperforms the classical bag of features method in action recognition

    Challenges and Open Questions of Machine Learning in Computer Security

    Get PDF
    This habilitation thesis presents advancements in machine learning for computer security, arising from problems in network intrusion detection and steganography. The thesis put an emphasis on explanation of traits shared by steganalysis, network intrusion detection, and other security domains, which makes these domains different from computer vision, speech recognition, and other fields where machine learning is typically studied. Then, the thesis presents methods developed to at least partially solve the identified problems with an overall goal to make machine learning based intrusion detection system viable. Most of them are general in the sense that they can be used outside intrusion detection and steganalysis on problems with similar constraints. A common feature of all methods is that they are generally simple, yet surprisingly effective. According to large-scale experiments they almost always improve the prior art, which is likely caused by being tailored to security problems and designed for large volumes of data. Specifically, the thesis addresses following problems: anomaly detection with low computational and memory complexity such that efficient processing of large data is possible; multiple-instance anomaly detection improving signal-to-noise ration by classifying larger group of samples; supervised classification of tree-structured data simplifying their encoding in neural networks; clustering of structured data; supervised training with the emphasis on the precision in top p% of returned data; and finally explanation of anomalies to help humans understand the nature of anomaly and speed-up their decision. Many algorithms and method presented in this thesis are deployed in the real intrusion detection system protecting millions of computers around the globe
    corecore