1,755 research outputs found

    EchoFusion: Tracking and Reconstruction of Objects in 4D Freehand Ultrasound Imaging without External Trackers

    Get PDF
    Ultrasound (US) is the most widely used fetal imaging technique. However, US images have limited capture range, and suffer from view dependent artefacts such as acoustic shadows. Compounding of overlapping 3D US acquisitions into a high-resolution volume can extend the field of view and remove image artefacts, which is useful for retrospective analysis including population based studies. However, such volume reconstructions require information about relative transformations between probe positions from which the individual volumes were acquired. In prenatal US scans, the fetus can move independently from the mother, making external trackers such as electromagnetic or optical tracking unable to track the motion between probe position and the moving fetus. We provide a novel methodology for image-based tracking and volume reconstruction by combining recent advances in deep learning and simultaneous localisation and mapping (SLAM). Tracking semantics are established through the use of a Residual 3D U-Net and the output is fed to the SLAM algorithm. As a proof of concept, experiments are conducted on US volumes taken from a whole body fetal phantom, and from the heads of real fetuses. For the fetal head segmentation, we also introduce a novel weak annotation approach to minimise the required manual effort for ground truth annotation. We evaluate our method qualitatively, and quantitatively with respect to tissue discrimination accuracy and tracking robustness.Comment: MICCAI Workshop on Perinatal, Preterm and Paediatric Image analysis (PIPPI), 201

    Recent Advances in Artificial Intelligence-Assisted Ultrasound Scanning

    Get PDF
    Funded by the Spanish Ministry of Economic Affairs and Digital Transformation (Project MIA.2021.M02.0005 TARTAGLIA, from the Recovery, Resilience, and Transformation Plan financed by the European Union through Next Generation EU funds). TARTAGLIA takes place under the R&D Missions in Artificial Intelligence program, which is part of the Spain Digital 2025 Agenda and the Spanish National Artificial Intelligence Strategy.Ultrasound (US) is a flexible imaging modality used globally as a first-line medical exam procedure in many different clinical cases. It benefits from the continued evolution of ultrasonic technologies and a well-established US-based digital health system. Nevertheless, its diagnostic performance still presents challenges due to the inherent characteristics of US imaging, such as manual operation and significant operator dependence. Artificial intelligence (AI) has proven to recognize complicated scan patterns and provide quantitative assessments for imaging data. Therefore, AI technology has the potential to help physicians get more accurate and repeatable outcomes in the US. In this article, we review the recent advances in AI-assisted US scanning. We have identified the main areas where AI is being used to facilitate US scanning, such as standard plane recognition and organ identification, the extraction of standard clinical planes from 3D US volumes, and the scanning guidance of US acquisitions performed by humans or robots. In general, the lack of standardization and reference datasets in this field makes it difficult to perform comparative studies among the different proposed methods. More open-access repositories of large US datasets with detailed information about the acquisition are needed to facilitate the development of this very active research field, which is expected to have a very positive impact on US imaging.Depto. de Estructura de la Materia, FĂ­sica TĂ©rmica y ElectrĂłnicaFac. de Ciencias FĂ­sicasTRUEMinistry of Economic Affairs and Digital Transformation from the Recovery, Resilience, and Transformation PlanNext Generation EU fundspu

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    An Affordable Portable Obstetric Ultrasound Simulator for Synchronous and Asynchronous Scan Training

    Get PDF
    The increasing use of Point of Care (POC) ultrasound presents a challenge in providing efficient training to new POC ultrasound users. In response to this need, we have developed an affordable, compact, laptop-based obstetric ultrasound training simulator. It offers freehand ultrasound scan on an abdomen-sized scan surface with a 5 degrees of freedom sham transducer and utilizes 3D ultrasound image volumes as training material. On the simulator user interface is rendered a virtual torso, whose body surface models the abdomen of a particular pregnant scan subject. A virtual transducer scans the virtual torso, by following the sham transducer movements on the scan surface. The obstetric ultrasound training is self-paced and guided by the simulator using a set of tasks, which are focused on three broad areas, referred to as modules: 1) medical ultrasound basics, 2) orientation to obstetric space, and 3) fetal biometry. A learner completes the scan training through the following three steps: (i) watching demonstration videos, (ii) practicing scan skills by sequentially completing the tasks in Modules 2 and 3, with scan evaluation feedback and help functions available, and (iii) a final scan exercise on new image volumes for assessing the acquired competency. After each training task has been completed, the simulator evaluates whether the task has been carried out correctly or not, by comparing anatomical landmarks identified and/or measured by the learner to reference landmark bounds created by algorithms, or pre-inserted by experienced sonographers. Based on the simulator, an ultrasound E-training system has been developed for the medical practitioners for whom ultrasound training is not accessible at local level. The system, composed of a dedicated server and multiple networked simulators, provides synchronous and asynchronous training modes, and is able to operate with a very low bit rate. The synchronous (or group-learning) mode allows all training participants to observe the same 2D image in real-time, such as a demonstration by an instructor or scan ability of a chosen learner. The synchronization of 2D images on the different simulators is achieved by directly transmitting the position and orientation of the sham transducer, rather than the ultrasound image, and results in a system performance independent of network bandwidth. The asynchronous (or self-learning) mode is described in the previous paragraph. However, the E-training system allows all training participants to stay networked to communicate with each other via text channel. To verify the simulator performance and training efficacy, we conducted several performance experiments and clinical evaluations. The performance experiment results indicated that the simulator was able to generate greater than 30 2D ultrasound images per second with acceptable image quality on medium-priced computers. In our initial experiment investigating the simulator training capability and feasibility, three experienced sonographers individually scanned two image volumes on the simulator. They agreed that the simulated images and the scan experience were adequately realistic for ultrasound training; the training procedure followed standard obstetric ultrasound protocol. They further noted that the simulator had the potential for becoming a good supplemental training tool for medical students and resident doctors. A clinic study investigating the simulator training efficacy was integrated into the clerkship program of the Department of Obstetrics and Gynecology, University of Massachusetts Memorial Medical Center. A total of 24 3rd year medical students were recruited and each of them was directed to scan six image volumes on the simulator in two 2.5-hour sessions. The study results showed that the successful scan times for the training tasks significantly decreased as the training progressed. A post-training survey answered by the students found that they considered the simulator-based training useful and suitable for medical students and resident doctors. The experiment to validate the performance of the E-training system showed that the average transmission bit rate was approximately 3-4 kB/s; the data loss was less than 1% and no loss of 2D images was visually detected. The results also showed that the 2D images on all networked simulators could be considered to be synchronous even though inter-continental communication existed

    Automatic 3D foetal face model extraction from ultrasonography through histogram processing

    Get PDF
    Ultrasound is by far the most adopted method for safe screening and diagnosis in the prenatal phase, thanks to its non-harmful nature with respect to radiation-based imaging techniques. The main drawback of ultrasound imaging is its sensitivity to scattering noise, which makes automatic tissues segmentation a tricky task, limiting the possible range of applications. An algorithm for automatically extracting the facial surface is presented here. The method provides a comprehensive segmentation process and does not require any human intervention or training procedures, leading from the output of the scanner directly to the 3D mesh describing the face. The proposed segmentation technique is based on a two-step statistical process that relies on both volumetric histogram processing and 2D segmentation. The completely unattended nature of such a procedure makes it possible to rapidly populate a large database of 3D point clouds describing healthy and unhealthy faces, enhancing the diagnosis of rare syndromes through statistical analyses

    FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound

    Full text link
    Fetal pose estimation in 3D ultrasound (US) involves identifying a set of associated fetal anatomical landmarks. Its primary objective is to provide comprehensive information about the fetus through landmark connections, thus benefiting various critical applications, such as biometric measurements, plane localization, and fetal movement monitoring. However, accurately estimating the 3D fetal pose in US volume has several challenges, including poor image quality, limited GPU memory for tackling high dimensional data, symmetrical or ambiguous anatomical structures, and considerable variations in fetal poses. In this study, we propose a novel 3D fetal pose estimation framework (called FetusMapV2) to overcome the above challenges. Our contribution is three-fold. First, we propose a heuristic scheme that explores the complementary network structure-unconstrained and activation-unreserved GPU memory management approaches, which can enlarge the input image resolution for better results under limited GPU memory. Second, we design a novel Pair Loss to mitigate confusion caused by symmetrical and similar anatomical structures. It separates the hidden classification task from the landmark localization task and thus progressively eases model learning. Last, we propose a shape priors-based self-supervised learning by selecting the relatively stable landmarks to refine the pose online. Extensive experiments and diverse applications on a large-scale fetal US dataset including 1000 volumes with 22 landmarks per volume demonstrate that our method outperforms other strong competitors.Comment: 16 pages, 11 figures, accepted by Medical Image Analysis(2023

    Robotic Ultrasound Imaging: State-of-the-Art and Future Perspectives

    Full text link
    Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques.Comment: Accepted by Medical Image Analysi

    How to Acquire Cardiac Volumes for Sonographic Examination of the Fetal Heart

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135444/1/jum20163551021.pd
    • …
    corecore