11,222 research outputs found

    Single camera pose estimation using Bayesian filtering and Kinect motion priors

    Full text link
    Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.Comment: 25 pages, Technical report, related to Burke and Lasenby, AMDO 2014 conference paper. Code sample: https://github.com/mgb45/SignerBodyPose Video: https://www.youtube.com/watch?v=dJMTSo7-uF

    Key-Pose Prediction in Cyclic Human Motion

    Get PDF
    In this paper we study the problem of estimating innercyclic time intervals within repetitive motion sequences of top-class swimmers in a swimming channel. Interval limits are given by temporal occurrences of key-poses, i.e. distinctive postures of the body. A key-pose is defined by means of only one or two specific features of the complete posture. It is often difficult to detect such subtle features directly. We therefore propose the following method: Given that we observe the swimmer from the side, we build a pictorial structure of poselets to robustly identify random support poses within the regular motion of a swimmer. We formulate a maximum likelihood model which predicts a key-pose given the occurrences of multiple support poses within one stroke. The maximum likelihood can be extended with prior knowledge about the temporal location of a key-pose in order to improve the prediction recall. We experimentally show that our models reliably and robustly detect key-poses with a high precision and that their performance can be improved by extending the framework with additional camera views.Comment: Accepted at WACV 2015, 8 pages, 3 figure

    GANerated Hands for Real-time 3D Hand Tracking from Monocular RGB

    Full text link
    We address the highly challenging problem of real-time 3D hand tracking based on a monocular RGB-only sequence. Our tracking method combines a convolutional neural network with a kinematic 3D hand model, such that it generalizes well to unseen data, is robust to occlusions and varying camera viewpoints, and leads to anatomically plausible as well as temporally smooth hand motions. For training our CNN we propose a novel approach for the synthetic generation of training data that is based on a geometrically consistent image-to-image translation network. To be more specific, we use a neural network that translates synthetic images to "real" images, such that the so-generated images follow the same statistical distribution as real-world hand images. For training this translation network we combine an adversarial loss and a cycle-consistency loss with a geometric consistency loss in order to preserve geometric properties (such as hand pose) during translation. We demonstrate that our hand tracking system outperforms the current state-of-the-art on challenging RGB-only footage

    Eye in the Sky: Real-time Drone Surveillance System (DSS) for Violent Individuals Identification using ScatterNet Hybrid Deep Learning Network

    Full text link
    Drone systems have been deployed by various law enforcement agencies to monitor hostiles, spy on foreign drug cartels, conduct border control operations, etc. This paper introduces a real-time drone surveillance system to identify violent individuals in public areas. The system first uses the Feature Pyramid Network to detect humans from aerial images. The image region with the human is used by the proposed ScatterNet Hybrid Deep Learning (SHDL) network for human pose estimation. The orientations between the limbs of the estimated pose are next used to identify the violent individuals. The proposed deep network can learn meaningful representations quickly using ScatterNet and structural priors with relatively fewer labeled examples. The system detects the violent individuals in real-time by processing the drone images in the cloud. This research also introduces the aerial violent individual dataset used for training the deep network which hopefully may encourage researchers interested in using deep learning for aerial surveillance. The pose estimation and violent individuals identification performance is compared with the state-of-the-art techniques.Comment: To Appear in the Efficient Deep Learning for Computer Vision (ECV) workshop at IEEE Computer Vision and Pattern Recognition (CVPR) 2018. Youtube demo at this: https://www.youtube.com/watch?v=zYypJPJipY

    Video Object Segmentation Without Temporal Information

    Full text link
    Video Object Segmentation, and video processing in general, has been historically dominated by methods that rely on the temporal consistency and redundancy in consecutive video frames. When the temporal smoothness is suddenly broken, such as when an object is occluded, or some frames are missing in a sequence, the result of these methods can deteriorate significantly or they may not even produce any result at all. This paper explores the orthogonal approach of processing each frame independently, i.e disregarding the temporal information. In particular, it tackles the task of semi-supervised video object segmentation: the separation of an object from the background in a video, given its mask in the first frame. We present Semantic One-Shot Video Object Segmentation (OSVOS-S), based on a fully-convolutional neural network architecture that is able to successively transfer generic semantic information, learned on ImageNet, to the task of foreground segmentation, and finally to learning the appearance of a single annotated object of the test sequence (hence one shot). We show that instance level semantic information, when combined effectively, can dramatically improve the results of our previous method, OSVOS. We perform experiments on two recent video segmentation databases, which show that OSVOS-S is both the fastest and most accurate method in the state of the art.Comment: Accepted to T-PAMI. Extended version of "One-Shot Video Object Segmentation", CVPR 2017 (arXiv:1611.05198). Project page: http://www.vision.ee.ethz.ch/~cvlsegmentation/osvos

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms
    corecore