7,104 research outputs found

    Reliable operations on oscillatory functions

    Full text link
    Approximate pp-point Leibniz derivation formulas as well as interpolatory Simpson quadrature sums adapted to oscillatory functions are discussed. Both theoretical considerations and numerical evidence concerning the dependence of the discretization errors on the frequency parameter of the oscillatory functions show that the accuracy gain of the present formulas over those based on the exponential fitting approach [L. Ixaru, "Computer Physics Communications", 105 (1997) 1--19] is overwhelming.Comment: 20 pages with 5 figures within, welcome any comments to [email protected]

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part II: application to partial differential equations

    Full text link
    A template-based generic programming approach was presented in a previous paper that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertainty quantification results for a 3D PDE application

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part I: template-based generic programming

    Full text link
    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering
    • …
    corecore