2,344 research outputs found

    MISPRONUNCIATION DETECTION AND DIAGNOSIS IN MANDARIN ACCENTED ENGLISH SPEECH

    Get PDF
    This work presents the development, implementation, and evaluation of a Mispronunciation Detection and Diagnosis (MDD) system, with application to pronunciation evaluation of Mandarin-accented English speech. A comprehensive detection and diagnosis of errors in the Electromagnetic Articulography corpus of Mandarin-Accented English (EMA-MAE) was performed by using the expert phonetic transcripts and an Automatic Speech Recognition (ASR) system. Articulatory features derived from the parallel kinematic data available in the EMA-MAE corpus were used to identify the most significant articulatory error patterns seen in L2 speakers during common mispronunciations. Using both acoustic and articulatory information, an ASR based Mispronunciation Detection and Diagnosis (MDD) system was built and evaluated across different feature combinations and Deep Neural Network (DNN) architectures. The MDD system captured mispronunciation errors with a detection accuracy of 82.4%, a diagnostic accuracy of 75.8% and a false rejection rate of 17.2%. The results demonstrate the advantage of using articulatory features in revealing the significant contributors of mispronunciation as well as improving the performance of MDD systems

    An automated lexical stress classification tool for assessing dysprosody in childhood apraxia of speech

    Get PDF
    Childhood apraxia of speech (CAS) commonly affects the production of lexical stress contrast in polysyllabic words. Automated classification tools have the potential to increase reliability and efficiency in measuring lexical stress. Here, factors affecting the accuracy of a custom-built deep neural network (DNN)-based classification tool are evaluated. Sixteen children with typical development (TD) and 26 with CAS produced 50 polysyllabic words. Words with strong–weak (SW, e.g., dinosaur) or WS (e.g., banana) stress were fed to the classification tool, and the accuracy measured (a) against expert judgment, (b) for speaker group, and (c) with/without prior knowledge of phonemic errors in the sample. The influence of segmental features and participant factors on tool accuracy was analysed. Linear mixed modelling showed significant interaction between group and stress type, surviving adjustment for age and CAS severity. For TD, agreement for SW and WS words was >80%, but CAS speech was higher for SW (>80%) than WS (~60%). Prior knowledge of segmental errors conferred no clear advantage. Automatic lexical stress classification shows promise for identifying errors in children’s speech at diagnosis or with treatment-related change, but accuracy for WS words in apraxic speech needs improvement. Further training of algorithms using larger sets of labelled data containing impaired speech and WS words may increase accuracy

    Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method

    Full text link
    The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent

    Speech recognition systems and russian pronunciation variation in the context of VoiceInteraction

    Get PDF
    The present thesis aims to describe the work performed during the internship for the master’s degree in Linguistics at VoiceInteraction, an international Artificial Intelligence (AI) company, specializing in developing speech processing technologies. The goal of the internship was to study phonetic characteristics of the Russian language, attending to four main tasks: description of the phonetic-phonological inventory; validation of transcriptions of broadcast news; validation of a previously created lexicon composed by ten thousand (10 000) most frequently observed words in a text corpus crawled from Russian reference newspapers websites; and integration of filled pauses into the Automatic Speech Recognizer (ASR). Initially, a collection of audio and text broadcast news media from Russian-speaking regions, European Russian, Belarus, and the Caucasus Region, featuring different varieties of Russian was conducted. The extracted data and the company's existing data were used to train the acoustic, pronunciation, and language models. The audio data was automatically processed in a proprietary platform and then revised by human annotators. Transcriptions produced automatically and reviewed by annotators were analyzed, and the most common errors were extracted to provide feedback to the community of annotators. The validation of transcriptions, along with the annotation of all of the disfluencies (that previously were left out), resulted in the decrease of Word Error Rate (WER) in most cases. In some cases (in European Russian transcriptions), WER increased, the models were not sufficiently effective to identify the correct words, potentially problematic. Also, audio with overlapped speech, disfluencies, and acoustic events can impact the WER. Since we used the model that was only trained with European Russian to recognize other varieties of Russian language, it resulted in high WER for Belarus and the Caucasus region. The characterization of the Russian phonetic-phonological inventory and the construction of pronunciation rules for internal and external sandhi phenomena were performed for the validation of the lexicon – ten thousand of the most frequently observed words in a text corpus crawled from Russian reference newspapers websites, were revised and modified for the extraction of linguistic patterns to be used in a statistical Grapheme-to-phone (G2P) model. Two evaluations were conducted: before the modifications to the lexicon and after. Preliminary results without training the model show no significant results - 19.85% WER before the modifications, and 19.97% WER after, with a difference of 0.12%. However, we observed a slight improvement of the most frequent words. In the future, we aim to extend the analysis of the lexicon to the 400 000 entries (total lexicon size), analyze the type of errors that are produced, decrease the word error rate (WER), and analyze acoustic models, as well. In this work, we also studied filled pauses, since we believe that research on filled pauses for the Russian language can improve the recognition system of VoiceInteraction, by reducing the processing time and increasing the quality. These are marked in the transcriptions with “%”. In Russian, according to the literature (Ten, 2015; Harlamova, 2008; Bogradonova-Belgarian & Baeva, 2018), these are %a [a], %am [am], %@ [ə], %@m [əm], %e [e], %ɨ [ɨ], %m [m], and %n [n]. In the speech data, two more filled pauses were found, namely, %na [na] and %mna [mna], as far as we know, not yet referenced in the literature. Finally, the work performed during an internship contributed to a European project - Artificial Intelligence and Advanced Data Analysis for Authority Agencies (AIDA). The main goal of the present project is to build a solution capable of automating the processing of large amounts of data that Law Enforcement Agencies (LEAs) have to analyze in the investigations of Terrorism and Cybercrime, using pioneering machine learning and artificial intelligence methods. VoiceInteraction's main contribution to the project was to apply ASR and validate the transcriptions of the Russian (religious-related content). In order to do so, all the tasks performed during the thesis were very relevant and applied in the scope of the AIDA project. Transcription analysis results from the AIDA project showed a high Out-of-Vocabulary (OOV) rate and high substitution (SUBS) rate. Since the language model used in this project was adapted for broadcast content, the religious-related words were left out. Also, function words were incorrectly recognized, in most cases, due to coarticulation with the previous or the following word.A presente tese descreve o trabalho que foi realizado no âmbito de um estágio em linguística computacional na VoiceInteraction, uma empresa de tecnologias de processamento de fala. Desde o início da sua atividade, a empresa tem-se dedicado ao desenvolvimento de tecnologia própria em várias áreas do processamento computacional da fala, entre elas, síntese de fala, processamento de língua natural e reconhecimento automático de fala, representando esta última a principal área de negócio da empresa. A tecnologia de reconhecimento de automático de fala da VoiceInteraction explora a utilização de modelos híbridos em combinação com as redes neuronais (DNN - Deep Neural Networks), que, segundo Lüscher et al. (2019), apresenta um melhor desempenho, quando comparado com modelos de end-to-end apenas. O objetivo principal do estágio focou-se no estudo da fonética da língua russa, atendendo a quatro tarefas: criação do inventário fonético-fonológico; validação das transcrições de noticiários; validação do léxico previamente criado e integração de pausas preenchidas no sistema. Inicialmente, foi realizada uma recolha dos principais meios de comunicação (áudio e texto), apresentando diferentes variedades do russo, nomeadamente, da Rússia Europeia, Bielorrússia e Cáucaso Central. Na Rússia europeia o russo é a língua oficial, na Bielorrússia o russo faz parte das línguas oficiais do país, e na região do Cáucaso Central, o russo é usado como língua franca, visto que este era falado na União Soviética e continua até hoje a ser falado nas regiões pós-Soviéticas. Tratou-se de abranger a maior cobertura possível da língua russa e neste momento apenas foi possível recolher os dados das variedades mencionadas. Os dados extraídos de momento, juntamente com os dados já existentes na empresa, foram utilizados no treino dos modelos acústicos, modelos de pronúncia e modelos de língua. Para o tratamento dos dados de áudio, estes foram inseridos numa plataforma proprietária da empresa, Calligraphus, que, para além de fornecer uma interface de transcrição para os anotadores humanos poderem transcrever os conteúdos, efetua também uma sugestão de transcrição automática desses mesmos conteúdos, a fim de diminuir o esforço despendido pelos anotadores na tarefa. De seguida, as transcrições foram analisadas, de forma a garantir que o sistema de anotação criado pela VoiceInteraction foi seguido, indicando todas as disfluências de fala (fenómenos característicos da edição da fala), tais como prolongamentos, pausas preenchidas, repetições, entre outros e transcrevendo a fala o mais próximo da realidade. Posteriormente, os erros sistemáticos foram analisados e exportados, de forma a fornecer orientações e sugestões de melhoria aos anotadores humanos e, por outro lado, melhorar o desempenho do sistema de reconhecimento. Após a validação das transcrições, juntamente com a anotação de todas as disfluências (que anteriormente eram deixadas de fora), observamos uma diminuição de WER, na maioria dos casos, tal como esperado. Porém, em alguns casos, observamos um aumento do WER. Apesar das correções efetuadas aos ficheiros analisados, os modelos não foram suficientemente eficazes no reconhecimento das palavras corretas, potencialmente problemáticas. A elevada taxa de WER nos áudios com debates políticos, está relacionada com uma maior frequência de fala sobreposta e disfluências (e.g., pausas preenchidas, prolongamentos). O modelo utilizado para reconhecer todas as variedades foi treinado apenas com a variedade de russo europeu e, por isso, o WER alto também foi observado para as variedades da Bielorrússia e para a região do Cáucaso. Numa perspetiva baseada em dados coletados pela empresa, foi realizada, de igual modo, uma caracterização e descrição do inventário fonético-fonológico do russo e a construção de regras de pronúncia, para fenómenos de sandhi interno e externo (Shcherba, 1957; Litnevskaya, 2006; Lekant, 2007; Popov, 2014). A empresa já empregava, através de um G2P estatístico específico para russo, um inventário fonético para o russo, correspondente à literatura referida anteriormente, mas o mesmo ainda não havia sido validado. Foi possível realizar uma verificação e correção, com base na caracterização dos fones do léxico do russo e nos dados ecológicos obtidos de falantes russos em situações comunicativas diversas. A validação do inventário fonético-fonológico permitiu ainda a consequente validação do léxico de russo. O léxico foi construído com base num conjunto de características (e.g., grafema em posição átona tem como pronúncia correspondente o fone [I] e em posição tónica - [i]; o grafema em posição final de palavra é pronunciado como [- vozeado] - [f]; entre outras características) e foi organizado com base no critério da frequência de uso. No total, foram verificadas dez mil (10 000) palavras mais frequentes do russo, tendo por base as estatísticas resultantes da análise dos conteúdos existentes num repositório de artigos de notícias recolhidos previamente de jornais de referência em língua russa. Foi realizada uma avaliação do sistema de reconhecimento antes e depois da modificação das dez mil palavras mais frequentemente ocorridas no léxico - 19,85% WER antes das modificações, e 19,97% WER depois, com uma diferença de 0,12%. Os resultados preliminares, sem o treino do modelo, não demonstram resultados significativos, porém, observamos uma ligeira melhoria no reconhecimento das palavras mais frequentes, tais como palavras funcionais, acrónimos, verbos, nomes, entre outros. Através destes resultados e com base nas regras criadas a partir da correção das dez mil palavras, pretendemos, no futuro, alargar as mesmas a todo o léxico, constituído por quatrocentas mil (400 000) entradas. Após a validação das transcrições e do léxico, com base na literatura, foi também possível realizar uma análise das pausas preenchidas do russo para a integração no sistema de reconhecimento. O interesse de se incluir também as pausas no reconhecedor automático deveu-se sobretudo a estes mecanismos serem difíceis de identificar automaticamente e poderem ser substituídos ou por afetarem as sequências adjacentes. De acordo com o sistema de anotação da empresa, as pausas preenchidas são marcadas na transcrição com o símbolo de percentagem - %. As pausas preenchidas do russo encontradas na literatura foram %a [a], %am [am] (Rose, 1998; Ten, 2015), %@ [ə], %@m [əm] (Bogdanova-Beglarian & Baeva, 2018) %e [e], %ɨ [ɨ], %m [m] e %n [n] (Harlamova, 2008). Nos dados de áudio disponíveis na referida plataforma, para além das pausas preenchidas mencionadas, foram encontradas mais duas, nomeadamente, %na [na] e %mna [mna], até quanto nos é dado saber, ainda não descritas na literatura. De momento, todas as pausas preenchidas referidas já fazem parte dos modelos de reconhecimento automático de fala para a língua russa. O trabalho desenvolvido durante o estágio, ou seja, a validação dos dados existentes na empresa, foi aplicado ao projeto europeu AIDA - The Artificial Intelligence and Advanced Data Analysis for Authority Agencies. O objetivo principal do presente projeto é de criar uma solução capaz de detetar possíveis crimes informáticos e de terrorismo, utilizando métodos de aprendizagem automática. A principal contribuição da VoiceInteraction para o projeto foi a aplicação do ASR e validação das transcrições do russo (conteúdo relacionado com a religião). Para tal, todas as tarefas realizadas durante a tese foram muito relevantes e aplicadas no âmbito do projeto AIDA. Os resultados da validação das transcrições do projeto, mostraram uma elevada taxa de palavras Fora de Vocabulário (OOV) e uma elevada taxa de Substituição (SUBS). Uma vez que o modelo de língua utilizado neste projeto foi adaptado ao conteúdo noticioso, as palavras relacionadas com a religião não se encontravam neste. Além disso, as palavras funcionais foram incorretamente reconhecidas, na maioria dos casos, devido à coarticulação com a palavra anterior ou a seguinte

    Directions for the future of technology in pronunciation research and teaching

    Get PDF
    This paper reports on the role of technology in state-of-the-art pronunciation research and instruction, and makes concrete suggestions for future developments. The point of departure for this contribution is that the goal of second language (L2) pronunciation research and teaching should be enhanced comprehensibility and intelligibility as opposed to native-likeness. Three main areas are covered here. We begin with a presentation of advanced uses of pronunciation technology in research with a special focus on the expertise required to carry out even small-scale investigations. Next, we discuss the nature of data in pronunciation research, pointing to ways in which future work can build on advances in corpus research and crowdsourcing. Finally, we consider how these insights pave the way for researchers and developers working to create research-informed, computer-assisted pronunciation teaching resources. We conclude with predictions for future developments

    Articulatory features for conversational speech recognition

    Get PDF
    corecore