3 research outputs found

    Continuous sensing and quantification of body motion in infants:A systematic review

    Get PDF
    Abnormal body motion in infants may be associated with neurodevelopmental delay or critical illness. In contrast to continuous patient monitoring of the basic vitals, the body motion of infants is only determined by discrete periodic clinical observations of caregivers, leaving the infants unattended for observation for a longer time. One step to fill this gap is to introduce and compare different sensing technologies that are suitable for continuous infant body motion quantification. Therefore, we conducted this systematic review for infant body motion quantification based on the PRISMA method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). In this systematic review, we introduce and compare several sensing technologies with motion quantification in different clinical applications. We discuss the pros and cons of each sensing technology for motion quantification. Additionally, we highlight the clinical value and prospects of infant motion monitoring. Finally, we provide suggestions with specific needs in clinical practice, which can be referred by clinical users for their implementation. Our findings suggest that motion quantification can improve the performance of vital sign monitoring, and can provide clinical value to the diagnosis of complications in infants.</p

    Automatic and continuous discomfort detection for premature infants in a NICU using video-based motion analysis

    No full text
    Frequent pain and discomfort in premature infants can lead to long-term adverse neurodevelopmental outcomes. Video-based monitoring is considered to be a promising contactless method for identification of discomfort moments. In this study, we propose a video-based method for automated detection of infant discomfort. The method is based on analyzing facial and body motion. Therefore, motion trajectories are estimated from frame to frame using optical flow. For each video segment, we further calculate the motion acceleration rate and extract 18 time- and frequency-domain features characterizing motion patterns. A support vector machine (SVM) classifier is then applied to video sequences to recognize infant status of comfort or discomfort. The method is evaluated using 183 video segments for 11 infants from 17 heel prick events. Experimental results show an AUC of 0.94 for discomfort detection and the average accuracy of 0.86 when combining all proposed features, which is promising for clinical use

    Automatic and continuous discomfort detection for premature infants in a NICU using video-based motion analysis

    No full text
    Frequent pain and discomfort in premature infants can lead to long-term adverse neurodevelopmental outcomes. Video-based monitoring is considered to be a promising contactless method for identification of discomfort moments. In this study, we propose a video-based method for automated detection of infant discomfort. The method is based on analyzing facial and body motion. Therefore, motion trajectories are estimated from frame to frame using optical flow. For each video segment, we further calculate the motion acceleration rate and extract 18 time- and frequency-domain features characterizing motion patterns. A support vector machine (SVM) classifier is then applied to video sequences to recognize infant status of comfort or discomfort. The method is evaluated using 183 video segments for 11 infants from 17 heel prick events. Experimental results show an AUC of 0.94 for discomfort detection and the average accuracy of 0.86 when combining all proposed features, which is promising for clinical use
    corecore