2 research outputs found

    Automatic Validation of Textual Attribute Values in E-commerce Catalog by Learning with Limited Labeled Data

    Full text link
    Product catalogs are valuable resources for eCommerce website. In the catalog, a product is associated with multiple attributes whose values are short texts, such as product name, brand, functionality and flavor. Usually individual retailers self-report these key values, and thus the catalog information unavoidably contains noisy facts. Although existing deep neural network models have shown success in conducting cross-checking between two pieces of texts, their success has to be dependent upon a large set of quality labeled data, which are hard to obtain in this validation task: products span a variety of categories. To address the aforementioned challenges, we propose a novel meta-learning latent variable approach, called MetaBridge, which can learn transferable knowledge from a subset of categories with limited labeled data and capture the uncertainty of never-seen categories with unlabeled data. More specifically, we make the following contributions. (1) We formalize the problem of validating the textual attribute values of products from a variety of categories as a natural language inference task in the few-shot learning setting, and propose a meta-learning latent variable model to jointly process the signals obtained from product profiles and textual attribute values. (2) We propose to integrate meta learning and latent variable in a unified model to effectively capture the uncertainty of various categories. (3) We propose a novel objective function based on latent variable model in the few-shot learning setting, which ensures distribution consistency between unlabeled and labeled data and prevents overfitting by sampling from the learned distribution. Extensive experiments on real eCommerce datasets from hundreds of categories demonstrate the effectiveness of MetaBridge on textual attribute validation and its outstanding performance compared with state-of-the-art approaches.Comment: KDD 202

    Multimodal Emergent Fake News Detection via Meta Neural Process Networks

    Full text link
    Fake news travels at unprecedented speeds, reaches global audiences and puts users and communities at great risk via social media platforms. Deep learning based models show good performance when trained on large amounts of labeled data on events of interest, whereas the performance of models tends to degrade on other events due to domain shift. Therefore, significant challenges are posed for existing detection approaches to detect fake news on emergent events, where large-scale labeled datasets are difficult to obtain. Moreover, adding the knowledge from newly emergent events requires to build a new model from scratch or continue to fine-tune the model, which can be challenging, expensive, and unrealistic for real-world settings. In order to address those challenges, we propose an end-to-end fake news detection framework named MetaFEND, which is able to learn quickly to detect fake news on emergent events with a few verified posts. Specifically, the proposed model integrates meta-learning and neural process methods together to enjoy the benefits of these approaches. In particular, a label embedding module and a hard attention mechanism are proposed to enhance the effectiveness by handling categorical information and trimming irrelevant posts. Extensive experiments are conducted on multimedia datasets collected from Twitter and Weibo. The experimental results show our proposed MetaFEND model can detect fake news on never-seen events effectively and outperform the state-of-the-art methods.Comment: accepted by KDD 202
    corecore