191 research outputs found

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    WiMax - a critical view of the technology and its economics

    Get PDF
    University of the Witwatersrand Faculty of Engineering and the Built Environment School of Information and Electrical EngineeringMobile Broadband is now more of a necessity than a luxury, especially amongst the younger generation, irrespective of where they live. Mobile WiMax and LTE, the latest and fastest Mobile Broadband technologies, mark significant improvements over 3G networks because they use IP (Internet Protocol) end-to-end. To end-users, this means faster network speeds, better quality services, and increased coverage area. To the Network Operators, this means simplified network architectures, efficient use of resources, and improved security. In this report, the different issues and challenges related to deploying Mobile WiMax (802.16e or 802.16m) in rural South Africa, were identifed and explored. In this project, Atoll, SONAR, and Touch Point analysis tools were used to determine which Mobile Broadband technology is economically and technically suited for rural South Africa. It was found that LTE yields superior performance results than WiMax, which in turn yields superior performance results to all other existing 3G technologies. However it will take time for LTE to reach rural areas therefore WiMax can be considered as a solution to extend Broadband services to rural South Africa and thus assist in bridging the digital divide. Recommendations on how best to deploy Mobile WiMax are made based on observations made from the experimental work.MT201

    Considering Pigeons for Carrying Delay Tolerant Networking based Internet traffic in Developing Countries

    Get PDF
    There are many regions in the developing world that suffer from poor infrastructure and lack of connection to the Internet and Public Switched Telephone Networks (PSTN). Delay Tolerant Networking (DTN) is a technology that has been advocated for providing store-and-forward network connectivity in these regions over the past few years. DTN often relies on human mobility in one form or another to support transportation of DTN data. This presents a socio-technical problem related to organizing how the data should be transported. In some situations the demand for DTN traffic can exceed that which is possible to support with human mobility, so alternative mechanisms are needed. In this paper we propose using live carrier pigeons (columba livia) to transport DTN data. Carrier pigeons have been used for transporting packets of information for a long time, but have not yet been seriously considered for transporting DTN traffic. We provide arguements that this mode of DTN data transport provides promise, and should receive attention from research and development projects. We provide an overview of pigeon characteristics to analyze the feasibility of using them for data transport, and present simulations of a DTN network that utilizes pigeon transport in order to provide an initial investigation into expected performance characteristics

    Taming and Leveraging Directionality and Blockage in Millimeter Wave Communications

    Get PDF
    To cope with the challenge for high-rate data transmission, Millimeter Wave(mmWave) is one potential solution. The short wavelength unlatched the era of directional mobile communication. The semi-optical communication requires revolutionary thinking. To assist the research and evaluate various algorithms, we build a motion-sensitive mmWave testbed with two degrees of freedom for environmental sensing and general wireless communication.The first part of this thesis contains two approaches to maintain the connection in mmWave mobile communication. The first one seeks to solve the beam tracking problem using motion sensor within the mobile device. A tracking algorithm is given and integrated into the tracking protocol. Detailed experiments and numerical simulations compared several compensation schemes with optical benchmark and demonstrated the efficiency of overhead reduction. The second strategy attempts to mitigate intermittent connections during roaming is multi-connectivity. Taking advantage of properties of rateless erasure code, a fountain code type multi-connectivity mechanism is proposed to increase the link reliability with simplified backhaul mechanism. The simulation demonstrates the efficiency and robustness of our system design with a multi-link channel record.The second topic in this thesis explores various techniques in blockage mitigation. A fast hear-beat like channel with heavy blockage loss is identified in the mmWave Unmanned Aerial Vehicle (UAV) communication experiment due to the propeller blockage. These blockage patterns are detected through Holm\u27s procedure as a problem of multi-time series edge detection. To reduce the blockage effect, an adaptive modulation and coding scheme is designed. The simulation results show that it could greatly improve the throughput given appropriately predicted patterns. The last but not the least, the blockage of directional communication also appears as a blessing because the geometrical information and blockage event of ancillary signal paths can be utilized to predict the blockage timing for the current transmission path. A geometrical model and prediction algorithm are derived to resolve the blockage time and initiate active handovers. An experiment provides solid proof of multi-paths properties and the numeral simulation demonstrates the efficiency of the proposed algorithm

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Improving the Reliability of Optimised Link State Routing Protocol in Smart Grid’s Neighbour Area Network

    Get PDF
    A reliable and resilient communication infrastructure that can cope with variable application traffic types and delay objectives is one of the prerequisites that differentiates a Smart Grid from the conventional electrical grid. However, the legacy communication infrastructure in the existing electrical grid is insufficient, if not incapable of satisfying the diverse communication requirements of the Smart Grid. The IEEE 802.11 ad hoc Wireless Mesh Network (WMN) is re-emerging as one of the communication networks that can significantly extend the reach of Smart Grid to backend devices through the Advanced Metering Infrastructure (AMI). However, the unique characteristics of AMI application traffic in the Smart Grid poses some interesting challenges to conventional communication networks including the ad hoc WMN. Hence, there is a need to modify the conventional ad hoc WMN, to address the uncertainties that may exist in its applicability in a Smart Grid environment. This research carries out an in-depth study of the communication of Smart Grid application traffic types over ad hoc WMN deployed in the Neighbour Area Network (NAN). It begins by conducting a critical review of the application characteristics and traffic requirements of several Smart Grid applications and highlighting some key challenges. Based on the reviews, and assuming that the application traffic types use the internet protocol (IP) as a transport protocol, a number of Smart Grid application traffic profiles were developed. Through experimental and simulation studies, a performance evaluation of an ad hoc WMN using the Optimised Link State Routing (OLSR) routing protocol was carried out. This highlighted some capacity and reliability issues that routing AMI application traffic may face within a conventional ad hoc WMN in a Smart Grid NAN. Given the fact that conventional routing solutions do not consider the traffic requirements when making routing decisions, another key observation is the inability of link metrics in routing protocols to select good quality links across multiple hops to a destination and also provide Quality of Service (QoS) support for target application traffic. As with most routing protocols, OLSR protocol uses a single routing metric acquired at the network layer, which may not be able to accommodate different QoS requirements for application traffic in Smart Grid. To address these problems, a novel multiple link metrics approach to improve the reliability performance of routing in ad hoc WMN when deployed for Smart Grid is presented. It is based on the OLSR protocol and explores the possibility of applying QoS routing for application traffic types in NAN based ad hoc WMN. Though routing in multiple metrics has been identified as a complex problem, Multi-Criteria Decision Making (MCDM) techniques such as the Analytical Hierarchy Process (AHP) and pruning have been used to perform such routing on wired and wireless multimedia applications. The proposed multiple metrics OLSR with AHP is used to offer the best available route, based on a number of considered metric parameters. To accommodate the variable application traffic requirements, a study that allows application traffic to use the most appropriate routing metric is presented. The multiple metrics development is then evaluated in Network Simulator 2.34; the simulation results demonstrate that it outperforms existing routing methods that are based on single metrics in OLSR. It also shows that it can be used to improve the reliability of application traffic types, thereby overcoming some weaknesses of existing single metric routing across multiple hops in NAN. The IEEE 802.11g was used to compare and analyse the performance of OLSR and the IEEE 802.11b was used to implement the multiple metrics framework which demonstrate a better performance than the single metric. However, the multiple metrics can also be applied for routing on different IEEE wireless standards, as well as other communication technologies such as Power Line Communication (PLC) when deployed in Smart Grid NAN

    End to End Reliability without Unicast Acknowledgements over Vehicular Networks

    Get PDF
    The Future Cities Project (http://futurecities.up.pt/) has turned the city of Porto (Portugal) into an urban-scale living lab, where researchers, companies and startups can develop and test technologies, products and services. One of its largest infrastructures is the UrbanSense testbed, consisting of 25 environmental sensing units installed around the city, and another the BusNet, a vehicular ad-hoc network installed in over 400 STCP buses together with 55 Road Side Units (RSU), operated by the UP spin-off Veniam. The data gathered by UrbanSense is carried by BusNet to a storage facility. Because BusNet does not support unicast addressing, there i currently on means to provide end-to-end reliability to the communication, leading to data losses. The goal of this thesis is to explore possibilities to address this problem, designing an application level protocol that provides reliability to the data transfer without requiring unicast addressing. Instead, the protocol should leverage the knowledge about bus routes and geographic location of sensing nodes to target the delivery of the acknowledgements
    • …
    corecore