12,177 research outputs found

    Automatic Structure Detection in Constraints of Tabular Data

    Full text link
    Abstract. Methods for the protection of statistical tabular dataā€”as controlled tabular adjustment, cell suppression, or controlled roundingā€” need to solve several linear programming subproblems. For large multi-dimensional linked and hierarchical tables, such subproblems turn out to be computationally challenging. One of the techniques used to reduce the solution time of mathematical programming problems is to exploit the constraints structure using some specialized algorithm. Two of the most usual structures are block-angular matrices with either linking rows (primal block-angular structure) or linking columns (dual block-angular structure). Although constraints associated to tabular data have intrin-sically a lot of structure, current software for tabular data protection neither detail nor exploit it, and simply provide a single matrix, or at most a set of smallest submatrices. We provide in this work an efficient tool for the automatic detection of primal or dual block-angular struc-ture in constraints matrices. We test it on some of the complex CSPLIB instances, showing that when the number of linking rows or columns is small, the computational savings are significant

    Towards a method for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a method for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. Our chosen application domain is the failure detection and management function for engine control systems: here generic requirements drive a software product line of target systems. A pilot formal specification and design exercise is undertaken on a small (twosensor) system element. This exercise has a number of aims: to support the domain analysis, to gain a view of appropriate design abstractions, for a B novice to gain experience in the B method and tools, and to evaluate the usability and utility of that method.We also present a prototype method for the production and verification of a generic requirement set in our UML-based formal notation, UML-B, and tooling developed in support. The formal verification both of the structural generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    A Web-Based Tool for Analysing Normative Documents in English

    Full text link
    Our goal is to use formal methods to analyse normative documents written in English, such as privacy policies and service-level agreements. This requires the combination of a number of different elements, including information extraction from natural language, formal languages for model representation, and an interface for property specification and verification. We have worked on a collection of components for this task: a natural language extraction tool, a suitable formalism for representing such documents, an interface for building models in this formalism, and methods for answering queries asked of a given model. In this work, each of these concerns is brought together in a web-based tool, providing a single interface for analysing normative texts in English. Through the use of a running example, we describe each component and demonstrate the workflow established by our tool

    Towards a methodology for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a methodology for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. We consider the failure detection and management function for engine control systems as an application domain where product line engineering is useful. The methodology produces a generic requirement set in our, UML based, formal notation, UML-B. The formal verification both of the generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools
    • ā€¦
    corecore