754 research outputs found

    Advances of Italian Machine Design

    Get PDF
    This 2028 Special Issue presents recent developments and achievements in the field of Mechanism and Machine Science coming from the Italian community with international collaborations and ranging from theoretical contributions to experimental and practical applications. It contains selected contributions that were accepted for presentation at the Second International Conference of IFToMM Italy, IFIT2018, that has been held in Cassino on 29 and 30 November 2018. This IFIT conference is the second event of a series that was established in 2016 by IFToMM Italy in Vicenza. IFIT was established to bring together researchers, industry professionals and students, from the Italian and the international community in an intimate, collegial and stimulating environment

    NASA Thesaurus. Volume 2: Access vocabulary

    Get PDF
    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus

    Aeronautical engineering: A continuing bibliography with indexes (supplement 202)

    Get PDF
    This bibliography lists 447 reports, articles and other documents introduced into the NASA scientific and technical information system in June 1986

    Proceedings of the 8th International Conference on Civil Engineering

    Get PDF
    This open access book is a collection of accepted papers from the 8th International Conference on Civil Engineering (ICCE2021). Researchers and engineers have discussed and presented around three major topics, i.e., construction and structural mechanics, building materials, and transportation and traffic. The content provide new ideas and practical experiences for both scientists and professionals

    Magnetosensitive e-skins for interactive electronics

    Get PDF
    The rapid progress of electronics and computer science in the last years has brought humans and machines closer than ever before. Current trends like the Internet of Things and artificial intelligence are closing the gap even further, by providing ubiquitous data processing and sensing. As this ongoing revolution advances, novel forms of human-machine interactions are required in an ever more connected world. A crucial component to enable these interactions is the field of flexible electronics, which aims to establish a seamless link between living and artificial entities using electronic skins (e-skins). E-skins combine the functionality of commercial electronics with the soft, stretchable and biocompatible characteristics of human skin or tissue. Until lately, the focus had been to replicate the standard functions associated with human skin, such as, temperature, pressure and chemical detection. Yet, recent developments have also introduced non-standard sensing capabilities like magnetic field detection to create the field of magnetosensitive e-skins. The addition of a supplementary information channel—an electronic sixth sense—has sparked a wide range of applications in the fields of cognitive psychology and human-machine interactions. In this thesis, we expand the concept of magnetosensitive e-skins to include the notion of directionality, which utilizes the full interaction potential of the magnetic field vector. Also, we introduce the use of flexible magnetoelectronics in virtual/augmented reality and human-computer interfaces. Three main results are attained in the course of this work: (i) we first demonstrate how magnetosensitive e-skins can be used as humanmachine interfaces driven by permanent magnet sources in the range of 5 mT. (ii) Building upon this milestone, we realize the first magnetosensitive e-skins which are driven by the earth’s magnetic field of 50 μT. (iii) We fabricate magnetosensitive e-skins which push the detection limit below 1 μT. The magnetosensitive e-skins in this work open exciting possibilities for sensory substitution experiments and sensory processing disorder therapies. Futhermore, for human-machine interactions, they provide a new interactive platform for touchless and gestural control in virtual and augmented reality scenarios beyond the limitations of optics-based systems.Der rasante Fortschritt der Elektronik und der Informatik in den letzten Jahren hat Mensch und Maschine nähergebracht als je zuvor. Aktuelle Trends wie das Internet der Dinge und künstliche Intelligenz schließen die Lücke noch weiter, indem sie eine allgegenwärtige Datenverarbeitung und -erfassung ermöglichen. Mit fortschreitender Revolution sind neue Formen der Mensch-Maschine-Interaktion in einer immer vernetzter werdenden Welt erforderlich. Eine entscheidende Komponente, um diese Interaktionen zu ermöglichen, ist das Gebiet der flexiblen Elektronik, das darauf abzielt, mithilfe elektronischer Häute (e-skins) eine nahtlose Verbindung zwischen lebenden und künstlichen Entitäten herzustellen. E-skins verbinden die Funktionalität kommerzieller Elektronik mit den weichen, dehnbaren und biokompatiblen Eigenschaften menschlicher Haut oder menschlichen Gewebes. Bis vor kurzem lag der Schwerpunkt auf der Nachbildung der mit der menschlichen Haut verbundenen Standardfunktionen wie Temperatur-, Druck- und Chemikalienerkennung. Jüngste Entwicklungen haben jedoch auch nicht standardmäßige Erfassungsfähigkeiten wie die Magnetfelderkennung eingeführt, um das Feld magnetoempfindlicher e-skins zu erzeugen. Die Hinzufügung eines zusätzlichen Informationskanals - eines elektronischen sechsten Sinns - hat eine breite Palette von Anwendungen auf den Gebieten der kognitiven Psychologie und der Mensch-Maschine-Interaktionen ausgelöst. In dieser Arbeit erweitern wir das Konzept der magnetoempfindlichen e-skins um den Begriff der Richtwirkung, bei dem das volle Wechselwirkungspotential des Magnetfeldvektors genutzt wird. Außerdem führen wir die Verwendung flexibler Magnetoelektronik in der virtuellen Realität / erweiterten Realität und in Mensch-Computer-Schnittstellen ein. Im Verlauf dieser Arbeit werden drei Hauptergebnisse erzielt: (i) Wir demonstrieren erstmals, wie magnetoempfindliche e-skins als Mensch-Maschine-Schnittstellen verwendet werden können, die von Permanentmagnetquellen im Bereich von 5 mT angetrieben werden. (ii) Aufbauend auf diesem Meilenstein realisieren wir die ersten magnetoempfindlichen e-skins, die vom Erdmagnetfeld von 50 μT angetrieben werden. (iii) Wir fertigen magnetoempfindliche e-skins, bei denen die Nachweisgrenze unter 1 μT liegt. Die magnetoempfindlichen e-skins in dieser Arbeit eröffnen aufregende Möglichkeiten für sensorische Substitutionsexperimente und Therapien bei sensorischen Verarbeitungsstörungen. Darüber hinaus bieten sie für die Mensch-Maschine-Interaktion eine neue interaktive Plattform für die berührungslose und gestische Steuerung in virtuellen und Augmented Reality-Szenarien, die über die Grenzen optikbasierter Systeme hinausgehen

    Innovative approach for Lifetime extension of an aging inventory of vulnerable bridges

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2013. Major: Civil Engineering. Advisor: Steven J. Wojtkiewicz. 1 computer file (PDF); xv, 158 pages.Many of the bridges in the United States are being used beyond their initial design intentions, classified as structurally deficient, and are in need of rehabilitation or replacement. A portion of these bridges suffer from specific bridge vulnerabilities that have been categorized as fracture prone. The safe operating life of fracture prone details is governed by the stress range experienced by the detail. Providing alternate load paths through a supplemental apparatus attached to the bridge structure can relieve high stress ranges, and the limited safe bridge service life due to these vulnerabilities may be safely extended. As part of the apparatus, the utility of a mechanical amplifier, the scissor jack, is carefully investigated; the amplifier allows for a very localized application and much smaller stiffness and damping device demands. The mathematical relationships for the apparatus, in particular the magnification factor for displacement and force, are formulated analytically and verified through numerical modeling. The effects of the mechanical amplifier are investigated on a simple beam numerical model as well as through more comprehensive parameter studies on numerical bridge models of an in-service fracture critical bridge. The parameter studies reveal that longer apparatuses and larger cross-sectional member area improve performance. A relatively small passive stiffness and damping device provides adequate safe life extension when employing the mechanical amplifier and vastly outperforms an apparatus without the amplifier. The apparatus parameters are optimized through a series of simulations, and small amounts of device damping with no stiffness perform the best. Much larger damping and stiffness coefficients are necessary to achieve similar performance without the mechanical amplifier. Safe life extension of over 100 percent can be achieved with apparatus member cross-sectional area of 25 percent of the bridge girder area. For implementation on a general bridge, a long and slender mechanically amplified RM apparatus is recommended for safe life extension. For a passive system, a RM device with a small damping coefficient and no stiffness should be employed. The cross-sectional area of the RM apparatus members will need to be sufficiently large to provide adequate safe life extension and will have to be evaluated on a case-by-case basis. A simple bridge model should be used to gauge initial member size. Frequency response analyses of the modified bridge structures show response amplification at some loading frequencies. Analyses also found different optimal device characteristics for decreasing the magnitude of the maximum or minimum moment range experienced at the vulnerability. These findings lend support to the hypothesis that semi-active control strategies allowing for changes in device characteristics may ultimately be more beneficial and should be further investigated

    Modelling, Test and Practice of Steel Structures

    Get PDF
    This reprint provides an international forum for the presentation and discussion of the latest developments in structural-steel research and its applications. The topics of this reprint include the modelling, testing and practice of steel structures and steel-based composite structures. A total of 17 high-quality, original papers dealing with all aspects of steel-structures research, including modelling, testing, and construction research on material properties, components, assemblages, connection, and structural behaviors, are included for publication

    DEVELOPING NEW ANALYTICAL AND NUMERICAL MODELS FOR MR FLUID DAMPERS AND THEIR APPLICATION TO SEISMIC DESIGN OF BUILDINGS

    Get PDF
    Magnetorheological (MR) and Electrorheological (ER) fluid dampers provide a fail-safe semi-active control mechanism for suppressing vibration response of structures as these smart fluids can change their apparent viscosity immediately under the influence of magnetic and electrical fields, respectively. MR based damping devices have recently received appropriate attention as they have less power demand, provide better dynamic range and are less sensitive to the temperature and external contaminants as compared to their ER counterparts. This thesis studies physics-based modeling of MR fluid dampers and their application in seismic design of buildings. In the first part of thesis, MR damper modeling and its related subject are studied, while in the second part of the thesis, application of MR dampers in tuned mass damper and bracing system is investigated. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This research presents a formulation for dynamics analysis of ER and MR fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behaviour of ER/MR fluid in general motion. Using the developed approach, the damping force of ER/MR damper can be evaluated under any type of excitations. While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating them with semi-active MR based control system enables them to perform more efficiently under varying external excitations. To study the application of MR damper in tuned mass damper, a forty-storey tall steel-frame building assumed to be located in the Pacific Coast region of Canada (Vancouver), designed according to the relevant Canadian code and standard, has been studied with and without semi-active and passive tuned mass dampers. The response of the structure has been studied under a variety of ground motions with low, medium and high frequency contents to investigate the performance of the optimally designed semi-active MR based tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active MR based system modifies structural response more effectively than the conventional passive tuned mass damper in both mitigation of the maximum displacement and reduction of the settling time of the building. Finally, the effectiveness of MR damper in structural bracing has been examined. Two steel building structures, five and twenty-storey building designed according to Canadian national building code, have been modeled using the finite element method. These building structures have been equipped with MR dampers in different floors appropriately based on the seismic floor-shear distribution. The governing equations of motion of the structures integrated with MR dampers have been cast into the state space representation for the implementation of the full state LQR combined with clipped optimal control strategies. The response of building structures under passive on and active controlled modes have been obtained for low, medium and high frequency content seismic records and compared

    NASA thesaurus. Volume 2: Access vocabulary

    Get PDF
    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains 40,738 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing
    corecore