1,329 research outputs found

    Augmented Reality Ultrasound Guidance in Anesthesiology

    Get PDF
    Real-time ultrasound has become a mainstay in many image-guided interventions and increasingly popular in several percutaneous procedures in anesthesiology. One of the main constraints of ultrasound-guided needle interventions is identifying and distinguishing the needle tip from needle shaft in the image. Augmented reality (AR) environments have been employed to address challenges surrounding surgical tool visualization, navigation, and positioning in many image-guided interventions. The motivation behind this work was to explore the feasibility and utility of such visualization techniques in anesthesiology to address some of the specific limitations of ultrasound-guided needle interventions. This thesis brings together the goals, guidelines, and best development practices of functional AR ultrasound image guidance (AR-UIG) systems, examines the general structure of such systems suitable for applications in anesthesiology, and provides a series of recommendations for their development. The main components of such systems, including ultrasound calibration and system interface design, as well as applications of AR-UIG systems for quantitative skill assessment, were also examined in this thesis. The effects of ultrasound image reconstruction techniques, as well as phantom material and geometry on ultrasound calibration, were investigated. Ultrasound calibration error was reduced by 10% with synthetic transmit aperture imaging compared with B-mode ultrasound. Phantom properties were shown to have a significant effect on calibration error, which is a variable based on ultrasound beamforming techniques. This finding has the potential to alter how calibration phantoms are designed cognizant of the ultrasound imaging technique. Performance of an AR-UIG guidance system tailored to central line insertions was evaluated in novice and expert user studies. While the system outperformed ultrasound-only guidance with novice users, it did not significantly affect the performance of experienced operators. Although the extensive experience of the users with ultrasound may have affected the results, certain aspects of the AR-UIG system contributed to the lackluster outcomes, which were analyzed via a thorough critique of the design decisions. The application of an AR-UIG system in quantitative skill assessment was investigated, and the first quantitative analysis of needle tip localization error in ultrasound in a simulated central line procedure, performed by experienced operators, is presented. Most participants did not closely follow the needle tip in ultrasound, resulting in 42% unsuccessful needle placements and a 33% complication rate. Compared to successful trials, unsuccessful procedures featured a significantly greater (p=0.04) needle-tip to image-plane distance. Professional experience with ultrasound does not necessarily lead to expert level performance. Along with deliberate practice, quantitative skill assessment may reinforce clinical best practices in ultrasound-guided needle insertions. Based on the development guidelines, an AR-UIG system was developed to address the challenges in ultrasound-guided epidural injections. For improved needle positioning, this system integrated A-mode ultrasound signal obtained from a transducer housed at the tip of the needle. Improved needle navigation was achieved via enhanced visualization of the needle in an AR environment, in which B-mode and A-mode ultrasound data were incorporated. The technical feasibility of the AR-UIG system was evaluated in a preliminary user study. The results suggested that the AR-UIG system has the potential to outperform ultrasound-only guidance

    Exploiting Temporal Image Information in Minimally Invasive Surgery

    Get PDF
    Minimally invasive procedures rely on medical imaging instead of the surgeons direct vision. While preoperative images can be used for surgical planning and navigation, once the surgeon arrives at the target site real-time intraoperative imaging is needed. However, acquiring and interpreting these images can be challenging and much of the rich temporal information present in these images is not visible. The goal of this thesis is to improve image guidance for minimally invasive surgery in two main areas. First, by showing how high-quality ultrasound video can be obtained by integrating an ultrasound transducer directly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden temporal information through video processing methods to help the surgeon localize important anatomical structures. Prototypes of delivery tools, with integrated ultrasound imaging, were developed for both transcatheter aortic valve implantation and mitral valve repair. These tools provided an on-site view that shows the tool-tissue interactions during valve repair. Additionally, augmented reality environments were used to add more anatomical context that aids in navigation and in interpreting the on-site video. Other procedures can be improved by extracting hidden temporal information from the intraoperative video. In ultrasound guided epidural injections, dural pulsation provides a cue in finding a clear trajectory to the epidural space. By processing the video using extended Kalman filtering, subtle pulsations were automatically detected and visualized in real-time. A statistical framework for analyzing periodicity was developed based on dynamic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound, this approach was used to image tissue perfusion in natural video and generate ventilation maps from free-breathing magnetic resonance imaging. A second statistical method, based on spectral analysis of pixel intensity values, allowed blood flow to be detected directly from high-frequency B-mode ultrasound video. Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video magnification to help localize critical vasculature. This approach shows particular promise in identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in nerve-sparing prostatectomy. A real-time implementation was developed which processed full-resolution stereoscopic video on the da Vinci Surgical System

    Artificial intelligence for ultrasound scanning in regional anaesthesia: a scoping review of the evidence from multiple disciplines

    Get PDF
    Background Artificial intelligence (AI) for ultrasound scanning in regional anaesthesia is a rapidly developing interdisciplinary field. There is a risk that work could be undertaken in parallel by different elements of the community but with a lack of knowledge transfer between disciplines, leading to repetition and diverging methodologies. This scoping review aimed to identify and map the available literature on the accuracy and utility of AI systems for ultrasound scanning in regional anaesthesia. Methods A literature search was conducted using Medline, Embase, CINAHL, IEEE Xplore, and ACM Digital Library. Clinical trial registries, a registry of doctoral theses, regulatory authority databases, and websites of learned societies in the field were searched. Online commercial sources were also reviewed. Results In total, 13,014 sources were identified; 116 were included for full-text review. A marked change in AI techniques was noted in 2016–17, from which point on the predominant technique used was deep learning. Methods of evaluating accuracy are variable, meaning it is impossible to compare the performance of one model with another. Evaluations of utility are more comparable, but predominantly gained from the simulation setting with limited clinical data on efficacy or safety. Study methodology and reporting lack standardisation. Conclusions There is a lack of structure to the evaluation of accuracy and utility of AI for ultrasound scanning in regional anaesthesia, which hinders rigorous appraisal and clinical uptake. A framework for consistent evaluation is needed to inform model evaluation, allow comparison between approaches/models, and facilitate appropriate clinical adoption

    Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification

    Get PDF
    Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up. Probe placement and ultrasound image interpretation are manual tasks contingent upon operator skill, leading to interoperator uncertainties that degrade radiotherapy precision. We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data. Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image classifier using a recurrent neural network to generate two sets of predictions in real-time. The first set identifies relevant prostate anatomy visible in the field of view using the classes: outside prostate, prostate periphery, prostate centre. The second set recommends a probe angular adjustment to achieve alignment between the probe and prostate centre with the classes: move left, move right, stop. The algorithm was trained and tested on 9,743 clinical images from 61 treatment sessions across 32 patients. We evaluated classification accuracy against class labels derived from three experienced observers at 2/3 and 3/3 agreement thresholds. For images with unanimous consensus between observers, anatomical classification accuracy was 97.2% and probe adjustment accuracy was 94.9%. The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7° (1.2°) from angle labels with full observer consensus, comparable to the 2.8° (2.6°) mean interobserver range. We propose such an algorithm could assist radiotherapy practitioners with limited experience of ultrasound image interpretation by providing effective real-time feedback during patient set-up

    Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification

    Get PDF
    Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up. Probe placement and ultrasound image inter-pretation are manual tasks contingent upon operator skill, leading to interoperator uncertainties that degrade radiotherapy precision. We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data. Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image clas-sifier using a recurrent neural network to generate two sets of predictions in real-time. The first set identifies relevant prostate anatomy visible in the field of view using the classes: outside prostate, prostate periphery, prostate centre. The second set recommends a probe angular adjustment to achieve alignment between the probe and prostate centre with the classes: move left, move right, stop. The algo-rithm was trained and tested on 9,743 clinical images from 61 treatment sessions across 32 patients. We evaluated classification accuracy against class labels de-rived from three experienced observers at 2/3 and 3/3 agreement thresholds. For images with unanimous consensus between observers, anatomical classification accuracy was 97.2% and probe adjustment accuracy was 94.9%. The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7^{\circ} (1.2^{\circ}) from angle labels with full observer consensus, comparable to the 2.8^{\circ} (2.6^{\circ}) mean interobserver range. We propose such an algorithm could assist ra-diotherapy practitioners with limited experience of ultrasound image interpreta-tion by providing effective real-time feedback during patient set-up.Comment: Accepted to MICCAI 202

    AUTOMATIC LOCALIZATION OF EPIDURAL NEEDLE ENTRY SITE WITH LUMBAR ULTRASOUND IMAGE PROCESSING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Is a Block of the Femoral and Sciatic Nerves an Alternative to Epidural Analgesia in Sheep Undergoing Orthopaedic Hind Limb Surgery? A Prospective, Randomized, Double Blinded Experimental Trial

    Get PDF
    Peripheral nerve blocks are commonly used in human and veterinary medicine. The aim of the study was to compare the analgesic efficacy of a combined block of the femoral and sciatic nerves with an epidural injection of ropivacaine in experimental sheep undergoing orthopaedic hind limb surgery. Twenty-five sheep were assigned to two groups (peripheral nerve block; sciatic and femoral nerves (P); epidural analgesia (E)). In group P 10 mL ropivacaine 0.5% was injected around the sciatic and the femoral nerves under sonographic guidance and 10 mL NaCl 0.9% into the epidural space while in group E 10 mL ropivacaine 0.5% was injected into the epidural space and 10 mL NaCl 0.9% to the sciatic and the femoral nerves. During surgery, heart rate, respiratory rate and mean blood pressure were used as indicators of nociception. In the postoperative phase, nociception was evaluated every hour by use of a purposefully adapted pain score until the animal showed painful sensation at the surgical site. The mean duration of analgesia at the surgical wound was 6 h in group P and 8 h in group E. Mean time to standing was 4 h in group P and 7 h in group E. In conclusion time to standing was significantly shorter in group P while the duration of nociception was comparable in both groups. The peripheral nerve block can be used as an alternative to epidural analgesia in experimental sheep

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Ultrasound Guidance in Perioperative Care

    Get PDF
    corecore