2 research outputs found

    Automatic Layer Separation using Light Field Imaging

    Full text link
    We propose a novel approach that jointly removes reflection or translucent layer from a scene and estimates scene depth. The input data are captured via light field imaging. The problem is couched as minimizing the rank of the transmitted scene layer via Robust Principle Component Analysis (RPCA). We also impose regularization based on piecewise smoothness, gradient sparsity, and layer independence to simultaneously recover 3D geometry of the transmitted layer. Experimental results on synthetic and real data show that our technique is robust and reliable, and can handle a broad range of layer separation problems.Comment: 9 pages, 9 figure

    Reflection Separation and Deblurring of Plenoptic Images

    Full text link
    In this paper, we address the problem of reflection removal and deblurring from a single image captured by a plenoptic camera. We develop a two-stage approach to recover the scene depth and high resolution textures of the reflected and transmitted layers. For depth estimation in the presence of reflections, we train a classifier through convolutional neural networks. For recovering high resolution textures, we assume that the scene is composed of planar regions and perform the reconstruction of each layer by using an explicit form of the plenoptic camera point spread function. The proposed framework also recovers the sharp scene texture with different motion blurs applied to each layer. We demonstrate our method on challenging real and synthetic images.Comment: ACCV 201
    corecore