7 research outputs found

    Automatic Image Selection in Photogrammetric Multi-view Stereo Methods

    Get PDF
    This paper brings together a team of specialists in optical metrology, museum curation, collection digitization and 3D development to describe and illustrate by example a method for the selection of the most suitable camera views, vantage viewpoints, from a large image dataset intended for metric 3D artefact reconstruction. The presented approach is capable of automatically identifying and processing the most appropriate images from a multi-image photogrammetric network captured by an imaging specialist. The aim is to produce a 3D model suited to a wide range of museum uses, including visitor interactives. The approach combines off-the-shelf imaging equipment with rigorous photogrammetric bundle adjustment and multi-view stereo (MVS), supported by an image selection process that is able to take into account range-related and visibility-related constraints. The paper focusses on the two key steps of image clustering and iterative image selection. The developed method is illustrated by the 3D recording of four ancient Egyptian artefacts from the Petrie Museum of Egyptian Archaeology at UCL, with an analysis taking into account completeness, coordination uncertainty and required number of images. Comparison is made against the baseline of the established CMVS (Clustering Views for Multi-view Stereo), which is a free package for selecting vantage images within a huge image collection. For the museum, key outputs from the 3D recording process are visitor interactives which are built around high quality textured mesh models. The paper therefore considers the quality of the output from each process as input to texture model generation. Results demonstrate that whilst both methods can provide high quality records, our new method, Image Network Designer (IND), can provide a better image selection for MVS than CMVS in terms of coordination uncertainty and completeness of the final model for the museum recording of artefacts. Furthermore, the improvements gained, particularly in model completeness, minimise the significant overhead in mesh editing needed to provide a more direct and economical route to 3D model output

    Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    Get PDF
    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm

    Image selection in photogrammetric multi-view stereo methods for metric and complete 3D reconstruction

    Get PDF
    Multi-View Stereo (MVS) as a low cost technique for precise 3D reconstruction can be a rival for laser scanners if the scale of the model is resolved. A fusion of stereo imaging equipment with photogrammetric bundle adjustment and MVS methods, known as photogrammetric MVS, can generate correctly scaled 3D models without using any known object distances. Although a huge number of stereo images (e.g. 200 high resolution images from a small object) captured of the object contains redundant data that allows detailed and accurate 3D reconstruction, the capture and processing time is increased when a vast amount of high resolution images are employed. Moreover, some parts of the object are often missing due to the lack of coverage of all areas. These problems demand a logical selection of the most suitable stereo camera views from the large image dataset. This paper presents a method for clustering and choosing optimal stereo or optionally single images from a large image dataset. The approach focusses on the two key steps of image clustering and iterative image selection. The method is developed within a software application called Imaging Network Designer (IND) and tested by the 3D recording of a gearbox and three metric reference objects. A comparison is made between IND and CMVS, which is a free package for selecting vantage images. The final 3D models obtained from the IND and CMVS approaches are compared with datasets generated with an MMDx Nikon Laser scanner. Results demonstrate that IND can provide a better image selection for MVS than CMVS in terms of surface coordinate uncertainty and completeness. © 2013 SPIE

    Developing 3D Imaging Programmes-Workflow and Quality Control

    Get PDF
    This article reports on a successful project for 3D imaging research, digital applications, and use of new technologies in the museum. The article will focus on the development and implementation of a viable workflow for the production of high-quality 3D models of museum objects, based on the 3D laser scanning and photogrammetry of selected ancient Egyptian artefacts. The development of a robust protocol for the complete process chain for imaging cultural heritage artefacts, from the acquisition of 2D and/or 3D images to the development of interactive applications for the public audience, was a specific objective of the project. The workflow devised by the university museum team combines reference photography and 3D imaging with a curatorial review of the actual object to its digital counterpart. It also integrates methodologies for managing the accompanying metadatasets to record these activities. As final stage deliverables from the process, the museum is making high-quality 3D images of artefacts from its collection available through creation and dissemination of digital 3D multiplatform interactive applications in order to allow remote access and to enhance the museum's public engagement. This short article concludes with practical considerations for a 3D imaging workflow such as time and skills needed, 3D model quality, and expectation management
    corecore