4 research outputs found

    Automatic human action recognition from video using Hidden Markov model

    Get PDF
    Posture classification is a key process for evaluating the behaviors of human being. Computer vision techniques can play a vital role in automating the overall process, however, occlusions, cluttered environment and illumination changes can make the whole task difficult. Using multiple cameras and warping known object appearance into the occluded view can solve the occlusion problem. In this paper, we present an automatic human detection and action recognition system using Hidden Markov Model and bag of Words. Background subtraction is performed using Gaussian mixture model. The algorithm is able to perform robust detection in the cluttered environment and severe occlusions. The novelty of this work is the dataset used. A private dataset has been created for this research at university of Minho. The experimental results show promising results

    Skeleton driven action recognition using an image-based spatial-temporal representation and convolution neural network

    Get PDF
    Individuals with Autism Spectrum Disorder (ASD) typically present difficulties in engaging and interacting with their peers. Thus, researchers have been developing different technological solutions as support tools for children with ASD. Social robots, one example of these technological solutions, are often unaware of their game partners, preventing the automatic adaptation of their behavior to the user. Information that can be used to enrich this interaction and, consequently, adapt the system behavior is the recognition of different actions of the user by using RGB cameras or/and depth sensors. The present work proposes a method to automatically detect in real-time typical and stereotypical actions of children with ASD by using the Intel RealSense and the Nuitrack SDK to detect and extract the user joint coordinates. The pipeline starts by mapping the temporal and spatial joints dynamics onto a color image-based representation. Usually, the position of the joints in the final image is clustered into groups. In order to verify if the sequence of the joints in the final image representation can influence the model’s performance, two main experiments were conducted where in the first, the order of the grouped joints in the sequence was changed, and in the second, the joints were randomly ordered. In each experiment, statistical methods were used in the analysis. Based on the experiments conducted, it was found statistically significant differences concerning the joints sequence in the image, indicating that the order of the joints might impact the model’s performance. The final model, a Convolutional Neural Network (CNN), trained on the different actions (typical and stereotypical), was used to classify the different patterns of behavior, achieving a mean accuracy of 92.4% ± 0.0% on the test data. The entire pipeline ran on average at 31 FPS.This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. Vinicius Silva thanks FCT for the PhD scholarship SFRH/BD/SFRH/BD/133314/2017

    Human action recognition using spatial-temporal analysis.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In the past few decades’ human action recognition (HAR) from video has gained a lot of attention in the computer vision domain. The analysis of human activities in videos span a variety of applications including security and surveillance, entertainment, and the monitoring of the elderly. The task of recognizing human actions in any scenario is a difficult and complex one which is characterized by challenges such as self-occlusion, noisy backgrounds and variations in illumination. However, literature provides various techniques and approaches for action recognition which deal with these challenges. This dissertation focuses on a holistic approach to the human action recognition problem with specific emphasis on spatial-temporal analysis. Spatial-temporal analysis is achieved by using the Motion History Image (MHI) approach to solve the human action recognition problem. Three variants of MHI are investigated, these are: Original MHI, Modified MHI and Timed MHI. An MHI is a single image describing a silhouettes motion over a period of time. Brighter pixels in the resultant MHI show the most recent movement/motion. One of the key problems of MHI is that it is not easy to know the conditions needed to obtain an MHI silhouette that will result in a high recognition rate for action recognition. These conditions are often neglected and thus pose a problem for human action recognition systems as they could affect their overall performance. Two methods are proposed to solve the human action recognition problem and to show the conditions needed to obtain high recognition rates using the MHI approach. The first uses the concept of MHI with the Bag of Visual Words (BOVW) approach to recognize human actions. The second approach combines MHI with Local Binary Patterns (LBP). The Weizmann and KTH datasets are then used to validate the proposed methods. Results from experiments show promising recognition rates when compared to some existing methods. The BOVW approach used in combination with the three variants of MHI achieved the highest recognition rates compared to the LBP method. The original MHI method resulted in the highest recognition rate of 87% on the Weizmann dataset and an 81.6% recognition rate is achieved on the KTH dataset using the Modified MHI approach

    Individual and group dynamic behaviour patterns in bound spaces

    Get PDF
    The behaviour analysis of individual and group dynamics in closed spaces is a subject of extensive research in both academia and industry. However, despite recent technological advancements the problem of implementing the existing methods for visual behaviour data analysis in production systems remains difficult and the applications are available only in special cases in which the resourcing is not a problem. Most of the approaches concentrate on direct extraction and classification of the visual features from the video footage for recognising the dynamic behaviour directly from the source. The adoption of such an approach allows recognising directly the elementary actions of moving objects, which is a difficult task on its own. The major factor that impacts the performance of the methods for video analytics is the necessity to combine processing of enormous volume of video data with complex analysis of this data using and computationally resourcedemanding analytical algorithms. This is not feasible for many applications, which must work in real time. In this research, an alternative simulation-based approach for behaviour analysis has been adopted. It can potentially reduce the requirements for extracting information from real video footage for the purpose of the analysis of the dynamic behaviour. This can be achieved by combining only limited data extracted from the original video footage with a symbolic data about the events registered on the scene, which is generated by 3D simulation synchronized with the original footage. Additionally, through incorporating some physical laws and the logics of dynamic behaviour directly in the 3D model of the visual scene, this framework allows to capture the behavioural patterns using simple syntactic pattern recognition methods. The extensive experiments with the prototype implementation prove in a convincing manner that the 3D simulation generates sufficiently rich data to allow analysing the dynamic behaviour in real-time with sufficient adequacy without the need to use precise physical data, using only a limited data about the objects on the scene, their location and dynamic characteristics. This research can have a wide applicability in different areas where the video analytics is necessary, ranging from public safety and video surveillance to marketing research to computer games and animation. Its limitations are linked to the dependence on some preliminary processing of the video footage which is still less detailed and computationally demanding than the methods which use directly the video frames of the original footage
    corecore