72,465 research outputs found

    Explaining Schizophrenia: Auditory Verbal Hallucination and Self‐Monitoring

    Get PDF
    Do self‐monitoring accounts, a dominant account of the positive symptoms of schizophrenia, explain auditory verbal hallucination? In this essay, I argue that the account fails to answer crucial questions any explanation of auditory verbal hallucination must address. Where the account provides a plausible answer, I make the case for an alternative explanation: auditory verbal hallucination is not the result of a failed control mechanism, namely failed self‐monitoring, but, rather, of the persistent automaticity of auditory experience of a voice. My argument emphasizes the importance of careful examination of phenomenology as providing substantive constraints on causal models of the positive symptoms in schizophrenia

    Synthesis using speaker adaptation from speech recognition DB

    Get PDF
    This paper deals with the creation of multiple voices from a Hidden Markov Model based speech synthesis system (HTS). More than 150 Catalan synthetic voices were built using Hidden Markov Models (HMM) and speaker adaptation techniques. Training data for building a Speaker-Independent (SI) model were selected from both a general purpose speech synthesis database (FestCat;) and a database design ed for training Automatic Speech Recognition (ASR) systems (Catalan SpeeCon database). The SpeeCon database was also used to adapt the SI model to different speakers. Using an ASR designed database for TTS purposes provided many different amateur voices, with few minutes of recordings not performed in studio conditions. This paper shows how speaker adaptation techniques provide the right tools to generate multiple voices with very few adaptation data. A subjective evaluation was carried out to assess the intelligibility and naturalness of the generated voices as well as the similarity of the adapted voices to both the original speaker and the average voice from the SI model.Peer ReviewedPostprint (published version

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    Empathic Agent Technology (EAT)

    Get PDF
    A new view on empathic agents is introduced, named: Empathic Agent Technology (EAT). It incorporates a speech analysis, which provides an indication for the amount of tension present in people. It is founded on an indirect physiological measure for the amount of experienced stress, defined as the variability of the fundamental frequency of the human voice. A thorough review of literature is provided on which the EAT is founded. In addition, the complete processing line of this measure is introduced. Hence, the first generally applicable, completely automated technique is introduced that enables the development of truly empathic agents

    Automatic Lesser Kestrel’s Gender Identification using Video Processing

    Get PDF
    Traditionally, animal surveillance is a common task for biologists. However, this task is often accompanied by the inspection of huge amounts of video. In this sense, this paper proposes an automatic video processing algorithm to identify the gender of a kestrel species. It is based on optical flow and texture analysis. This algorithm makes it possible to identify the important information and therefore, minimizing the analysis time for biologists. Finally, to validate this algorithm, it has been tested against a set of videos, getting good classification results.Junta de Andalucía P10-TIC-570
    corecore