3,881 research outputs found

    FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning

    Full text link
    Finance is a particularly difficult playground for deep reinforcement learning. However, establishing high-quality market environments and benchmarks for financial reinforcement learning is challenging due to three major factors, namely, low signal-to-noise ratio of financial data, survivorship bias of historical data, and model overfitting in the backtesting stage. In this paper, we present an openly accessible FinRL-Meta library that has been actively maintained by the AI4Finance community. First, following a DataOps paradigm, we will provide hundreds of market environments through an automatic pipeline that collects dynamic datasets from real-world markets and processes them into gym-style market environments. Second, we reproduce popular papers as stepping stones for users to design new trading strategies. We also deploy the library on cloud platforms so that users can visualize their own results and assess the relative performance via community-wise competitions. Third, FinRL-Meta provides tens of Jupyter/Python demos organized into a curriculum and a documentation website to serve the rapidly growing community. FinRL-Meta is available at: https://github.com/AI4Finance-Foundation/FinRL-MetaComment: NeurIPS 2022 Datasets and Benchmarks. 36th Conference on Neural Information Processing Systems Datasets and Benchmarks Trac

    Dynamic Datasets and Market Environments for Financial Reinforcement Learning

    Full text link
    The financial market is a particularly challenging playground for deep reinforcement learning due to its unique feature of dynamic datasets. Building high-quality market environments for training financial reinforcement learning (FinRL) agents is difficult due to major factors such as the low signal-to-noise ratio of financial data, survivorship bias of historical data, and model overfitting. In this paper, we present FinRL-Meta, a data-centric and openly accessible library that processes dynamic datasets from real-world markets into gym-style market environments and has been actively maintained by the AI4Finance community. First, following a DataOps paradigm, we provide hundreds of market environments through an automatic data curation pipeline. Second, we provide homegrown examples and reproduce popular research papers as stepping stones for users to design new trading strategies. We also deploy the library on cloud platforms so that users can visualize their own results and assess the relative performance via community-wise competitions. Third, we provide dozens of Jupyter/Python demos organized into a curriculum and a documentation website to serve the rapidly growing community. The open-source codes for the data curation pipeline are available at https://github.com/AI4Finance-Foundation/FinRL-MetaComment: 49 pages, 15 figures. arXiv admin note: substantial text overlap with arXiv:2211.0310

    MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization

    Full text link
    Portfolio management is a fundamental problem in finance. It involves periodic reallocations of assets to maximize the expected returns within an appropriate level of risk exposure. Deep reinforcement learning (RL) has been considered a promising approach to solving this problem owing to its strong capability in sequential decision making. However, due to the non-stationary nature of financial markets, applying RL techniques to portfolio optimization remains a challenging problem. Extracting trading knowledge from various expert strategies could be helpful for agents to accommodate the changing markets. In this paper, we propose MetaTrader, a novel two-stage RL-based approach for portfolio management, which learns to integrate diverse trading policies to adapt to various market conditions. In the first stage, MetaTrader incorporates an imitation learning objective into the reinforcement learning framework. Through imitating different expert demonstrations, MetaTrader acquires a set of trading policies with great diversity. In the second stage, MetaTrader learns a meta-policy to recognize the market conditions and decide on the most proper learned policy to follow. We evaluate the proposed approach on three real-world index datasets and compare it to state-of-the-art baselines. The empirical results demonstrate that MetaTrader significantly outperforms those baselines in balancing profits and risks. Furthermore, thorough ablation studies validate the effectiveness of the components in the proposed approach

    Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning

    Full text link
    Pair trading is one of the most effective statistical arbitrage strategies which seeks a neutral profit by hedging a pair of selected assets. Existing methods generally decompose the task into two separate steps: pair selection and trading. However, the decoupling of two closely related subtasks can block information propagation and lead to limited overall performance. For pair selection, ignoring the trading performance results in the wrong assets being selected with irrelevant price movements, while the agent trained for trading can overfit to the selected assets without any historical information of other assets. To address it, in this paper, we propose a paradigm for automatic pair trading as a unified task rather than a two-step pipeline. We design a hierarchical reinforcement learning framework to jointly learn and optimize two subtasks. A high-level policy would select two assets from all possible combinations and a low-level policy would then perform a series of trading actions. Experimental results on real-world stock data demonstrate the effectiveness of our method on pair trading compared with both existing pair selection and trading methods.Comment: 10 pages, 6 figure

    Learning To Play The Trading Game

    Get PDF
    Can we train a stock trading bot that can take decisions in high-entropy envi- ronments like stock markets to generate profits based on some optimal policy? Can we further extend this learning for any general trading problem? Quantitative Al- gorithms are responsible for more than 75% of the stock trading around the world. Creating a stock market prediction model is comparatively easy. But creating a prof- itable prediction model is still considered as a challenging task in the field of machine learning and deep learning due to the unpredictability of the financial markets. Us- ing biologically inspired computing techniques of reinforcement learning (RL) and artificial neural networks(ANN), this project attempts to train an agent who takes decisions based on the optimal decision policies learned. Different existing RL tech- niques and their slightly modified variants will be used to train the agent, and the trained model is then tested against different stock prices and also stock portfolio settings to see if the agent has learned the rules of the game and can it act optimally irrespective of the testing data provided. This work aims to provide general users with simple recommendations about the possible investment decisions of selected stocks in the portfolio. Results of the implemented approaches do seem to work somewhat well on specific periods of stock market time series, but they are observed to be fragile. Selected strategies do not guarantee similar results on all historical time-periods, nor they are guaranteed to provide exceptional performance on unpredictable future stock market time-series data

    Analysis of cryptocurrency markets from 2016 to 2019

    Get PDF
    This thesis explores machine learning techniques in algorithmic trading. We implement a trading computer program that balances a portfolio of cryptocurrencies. We try to outperform an equally weighted strategy. As our machine learning technique, we use deep reinforcement learning. Cryptocurrencies are digital mediums of exchange that use cryptography to secure transactions. The most well-known example is Bitcoin. They are interesting to analyze due to high volatility and lack of previous research. The availability of data is also exceptional. We introduce an algorithmic trading agent – a computer program powered by machine learning. The agent follows some pre-determined instructions and executes market orders. Traditionally a human trader determines these instructions by using some technical indicators. We instead give the trading agent raw price data as input and let it figure out its instructions. The agent uses machine learning to figure out the trading rules. We evaluate the performance of the agent in seven different backtest stories. Each backtest story reflects some unique and remarkable period in cryptocurrency history. One backtest period was from December 2017 when Bitcoin reached its all-time high price. Another one is from April 2017 when Bitcoin almost lost its place as the most valued cryptocurrency. The stories show the market conditions where the agent excels and reveals its risks. The algorithmic trading agent has two goals. First, it chooses initial weights, and then it rebalances these weights periodically. Choosing proper initial weights is crucial since transaction costs make trade action costly. We evaluate the trading agent’s performance in these two tasks by using two agents: a static and a dynamic agent. The static agent only does the weight initialization and does not rebalance. The dynamic agent also rebalances. We find that the agent does a poor job in choosing initial weights. We also want to find out the optimal time-period for rebalancing for the dynamic agent. Therefore, we compare rebalancing periods from 15 minutes to 1 day. To make our results robust, we ran over a thousand simulations. We found that 15 – 30 minutes rebalancing periods tend to work the best. We find that the algorithmic trading agent closely follows an equally weighted strategy. This finding suggests that the agent is unavailable to decipher meaningful signals from the noisy price data. The machine learning approach does not provide an advantage over equally weighted strategy. Nevertheless, the trading agent excels in volatile and mean reverting market conditions. On these periods, the dynamic agent has lower volatility and a higher Sharpe ratio. However, it has a dangerous tendency of following the looser. Our results contribute to the field of algorithmic finance. We show that frequent rebalancing is a useful tool in the risk management of highly volatile asset classes. Further investigation is required to extend these findings beyond cryptocurrencies
    • …
    corecore