4 research outputs found

    The effects of Pose on Facial Expression Recognition

    Get PDF
    Research into facial expression recognition has predominantly been based upon near frontal view data. However, a recent 3D facial expression database (BU-3DFE database) has allowed empirical investigation of facial expression recognition across pose. In this paper, we investigate the effects of pose from frontal to profile view on facial expression recognition. Experiments are carried out on 100 subjects with 5 yaw angles over 6 prototypical expressions. Expressions have 4 levels of intensity from subtle to exaggerated. We evaluate features such as local binary patterns (LBPs) as well as various extensions of LBPs. In addition, a novel approach to facial expression recognition is proposed using local gabor binary patterns (LGBPs). Multi class support vector machines (SVMs) are used for classification. We investigate the effects of image resolution and pose on facial expression classification using a variety of different features

    Automatic facial expression recognition using boosted discriminatory classifiers

    No full text
    Over the last two decades automatic facial expression recognition has become an active research area. Facial expressions are an important channel of non-verbal communication, and can provide cues to emotions and intentions. This paper introduces a novel method for facial expression recognition, by assembling contour fragments as discriminatory classifiers and boosting them to form a strong accurate classifier. Detection is fast as features are evaluated using an efficient lookup to a chamfer image, which weights the response of the feature. An Ensemble classification technique is presented using a voting scheme based on classifiers responses. The results of this research are a 6-class classifier (6 basic expressions of anger, joy, sadness, surprise, disgust and fear) which demonstrate competitive results achieving rates as high as 96% for some expressions. As classifiers are extremely fast to compute the approach operates at well above frame rate. We also demonstrate how a dedicated classifier can be consrtucted to give optimal automatic parameter selection of the detector, allowing real time operation on unconstrained video
    corecore