3 research outputs found

    Trajektorienplanung zur Kollisionsvermeidung im Straßenverkehr

    Get PDF
    In kritischen Situationen sind viele Fahrer von PKWs mit der Fahrzeugführungsaufgabe überfordert. Die Unfallzahlen konnten bis 2013 auch durch die Einführung von aktiven Fahrerassistenzsystemen wie ABS, ASR und ESC gesenkt werden. In den folgenden Jahren ist ein leichter Anstieg zu verzeichnen. Um die Unfallzahlen wieder zu senken, werden neue Fahrerassistenzsysteme benötigt, die neben fahrdynamischen Größen auch Informationen über das Fahrzeugumfeld miteinbeziehen. Dies kann durch assistierende Funktionen, welche der Fahrer im Fehlerfall übersteuern kann, und/oder durch automatisierte Fahrfunktionen realisiert werden. Die Arbeit beschreibt und vergleicht vier verschiedene Verfahren zur Fahrzeugführung, die zur Kollisionsvermeidung im Straßenverkehr eingesetzt werden können. Das Bahnfolgeverfahren verwendet eine analytische Funktion zur Beschreibung der Ausweichbahn und eine Folgeregelung zur Führung des Fahrzeugs entlang der Bahn. Es ist ein einfaches Konzept, welches mit wenig Rechenleistung auskommt, sich aber nicht an viele verschiedene Situationen anpassen lässt. Deshalb wird das Online-Trajektorienoptimierungsverfahren entwickelt. Zur Berechnung der Ausweichtrajektorien wird ein Gütemaß minimiert, welches Anteile zur Kollisionsvermeidung und zur Minimierung fahrdynamischer Reaktionen enthält. Die Realisierung der fortlaufend neu geplanten Trajektorie wird mit einer unterlagerten Geschwindigkeits- und Kurswinkelregelung durchgeführt. Das modellprädiktive Planungs- und Regelungsverfahren löst analog zum Online-Trajektorienoptimierungsverfahrens in jedem Abtastschritt ein Optimierungsproblem. Die kollisionsfreie Trajektorie wird zusätzlich an die Dynamikgleichungen eines Einspurmodells angepasst. Das Optimierungsproblem ist daher ein Optimalsteuerungsproblem, dessen Lösung neben der optimalen Trajektorie auch die zugehörigen Stellgrößen enthält. Die bisher getrennt behandelten Probleme, Trajektorienplanung und Folgeregelung, werden also in einem Schritt gelöst. Der Nachteil dieses Verfahrens ist der nochmals höhere Rechenaufwand im Vergleich zum Online-Trajektorienoptimierungsverfahren. Durch die Beschränkung auf konstante Stellgrößen während der Prädiktion und eine grobe Stellgrößendiskretisierung weist das modellprädiktive Trajektorienscharverfahren eine deutlich niedrigere Rechenlast auf. Die Vorteile der modellprädiktiven simultanen Planung und Regelung bleiben erhalten, jedoch können auf Grund des kurzen Prädiktionshorizontes weiter entfernte Hindernisse nicht in der Planung berücksichtigt werden. Durch die adaptive Wahl der Diskretisierung wird auch im stationären Zustand eine hohe Regelungsgüte erreicht. Der abschließende Vergleich durch eine Nutzwertanalyse zeigt, dass die vier Verfahren, in Abhängigkeit des Anwendungsfalles, unterschiedlich gut geeignet sind

    Haptic Steering Interfaces for Semi-Autonomous Vehicles

    Full text link
    Autonomous vehicles are predicted to significantly improve transportation quality by reducing traffic congestion, fuel expenditure and road accidents. However, until autonomous vehicles are reliable in all scenarios, human drivers will be asked to supervise automation behavior and intervene in automated driving when deemed necessary. Retaining the human driver in a strictly supervisory role, however, may make the driver complacent and reduce driver's situation awareness and driving skills which ironically, can further compromise the driver’s ability to intervene in safety-critical scenarios. Such issues can be alleviated by designing a human-automation interface that keeps the driver in-the-loop through constant interaction with automation and continuous feedback of automation's actions. This dissertation evaluates the utility of haptic feedback at the steering interface for enhancing driver awareness and enabling continuous human-automation interaction and performance improvement in semi-autonomous vehicles. In the first part of this dissertation, I investigate a driving scheme called Haptic Shared Control (HSC) in which the human driver and automation system share the steering control by simultaneously acting at the steering interface with finite mechanical impedances. I hypothesize that HSC can mitigate the human factors issues associated with semi-autonomous driving by allowing the human driver to continuously interact with automation and receive feedback about automation action. To test this hypothesis, I present two driving simulator experiments that are focused on the evaluation of HSC with respect to existing driving schemes during induced human and automation faults. In the first experiment, I compare obstacle avoidance performance of HSC with two existing control sharing schemes that support instantaneous transfers of control authority between human and automation. The results indicate that HSC outperforms both schemes in terms of obstacle avoidance, maneuvering efficiency, and driver engagement. In the second experiment, I consider emergency scenarios where I compare two HSC designs that provide high and low control authority to automation and an existing paradigm that decouples the driver input from the tires during collision avoidance. Results show that decoupling the driver invokes out-of-the-loop issues and misleads drivers to believe that they are in control. I also discover a `fault protection tradeoff': as the control authority provided to one agent increases, the protection against that agent's faults provided by the other agent reduces. In the second part of this dissertation, I focus on the problem of estimating haptic feedback from the road, or the road feedback. Road feedback is critical to making the driver aware of the state of the vehicle and road conditions, and its estimates are used in a variety of driver assist systems. However, conventional estimators only estimate road feedback on flat roads. To overcome this issue, I develop three estimators that enable road feedback estimation on uneven roads. I test and compare the performance of the three estimators by performing driving experiments on uneven roads such as road slopes and cleats. In the final part of this dissertation, I shift focus from physical human-automation interaction to human-human interaction. I present the evidence from the literature demonstrating that haptic feedback improves the performance of two humans physically collaborating on a shared task. I develop a control-theoretic model for haptic communication that can describe the mechanism by which haptic interaction facilitates performance improvement. The model creates a promising means to transfer the obtained insights to design robots or automation systems that can collaborate more efficiently with humans.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169975/1/akshaybh_1.pd
    corecore