108,490 research outputs found

    Automatic Debiased Machine Learning of Causal and Structural Effects

    Full text link
    Many causal and structural effects depend on regressions. Examples include average treatment effects, policy effects, average derivatives, regression decompositions, economic average equivalent variation, and parameters of economic structural models. The regressions may be high dimensional. Plugging machine learners into identifying equations can lead to poor inference due to bias and/or model selection. This paper gives automatic debiasing for estimating equations and valid asymptotic inference for the estimators of effects of interest. The debiasing is automatic in that its construction uses the identifying equations without the full form of the bias correction and is performed by machine learning. Novel results include convergence rates for Lasso and Dantzig learners of the bias correction, primitive conditions for asymptotic inference for important examples, and general conditions for GMM. A variety of regression learners and identifying equations are covered. Automatic debiased machine learning (Auto-DML) is applied to estimating the average treatment effect on the treated for the NSW job training data and to estimating demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income

    Dynamic Mixture of Finite Mixtures of Factor Analysers with Automatic Inference on the Number of Clusters and Factors

    Full text link
    Mixtures of factor analysers (MFA) models represent a popular tool for finding structure in data, particularly high-dimensional data. While in most applications the number of clusters, and especially the number of latent factors within clusters, is mostly fixed in advance, in the recent literature models with automatic inference on both the number of clusters and latent factors have been introduced. The automatic inference is usually done by assigning a nonparametric prior and allowing the number of clusters and factors to potentially go to infinity. The MCMC estimation is performed via an adaptive algorithm, in which the parameters associated with the redundant factors are discarded as the chain moves. While this approach has clear advantages, it also bears some significant drawbacks. Running a separate factor-analytical model for each cluster involves matrices of changing dimensions, which can make the model and programming somewhat cumbersome. In addition, discarding the parameters associated with the redundant factors could lead to a bias in estimating cluster covariance matrices. At last, identification remains problematic for infinite factor models. The current work contributes to the MFA literature by providing for the automatic inference on the number of clusters and the number of cluster-specific factors while keeping both cluster and factor dimensions finite. This allows us to avoid many of the aforementioned drawbacks of the infinite models. For the automatic inference on the cluster structure, we employ the dynamic mixture of finite mixtures (MFM) model. Automatic inference on cluster-specific factors is performed by assigning an exchangeable shrinkage process (ESP) prior to the columns of the factor loading matrices. The performance of the model is demonstrated on several benchmark data sets as well as real data applications
    • …
    corecore