760,768 research outputs found
Automatic linearity detection
Given a function, or more generally an operator, the question "Is it linear?" seems simple to answer. In many applications of scientific computing it might be worth determining the answer to this question in an automated way; some functionality, such as operator exponentiation, is only defined for linear operators, and in other problems, time saving is available if it is known that the problem being solved is linear. Linearity detection is closely connected to sparsity detection of Hessians, so for large-scale applications, memory savings can be made if linearity information is known. However, implementing such an automated detection is not as straightforward as one might expect. This paper describes how automatic linearity detection can be implemented in combination with automatic differentiation, both for standard scientific computing software, and within the Chebfun software system. The key ingredients for the method are the observation that linear operators have constant derivatives, and the propagation of two logical vectors, and , as computations are carried out. The values of and are determined by whether output variables have constant derivatives and constant values with respect to each input variable. The propagation of their values through an evaluation trace of an operator yields the desired information about the linearity of that operator
Supporting the development and adoption of automatic lameness detection systems in dairy cattle : effect of system cost and performance on potential market shares
Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was (sic)2.57 per % less missed lame cows, (sic)1.65 per % less false alerts, and (sic)12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system's potential adoption rate
Motion Artifact Detection in Confocal Laser Endomicroscopy Images
Confocal Laser Endomicroscopy (CLE), an optical imaging technique allowing
non-invasive examination of the mucosa on a (sub)cellular level, has proven to
be a valuable diagnostic tool in gastroenterology and shows promising results
in various anatomical regions including the oral cavity. Recently, the
feasibility of automatic carcinoma detection for CLE images of sufficient
quality was shown. However, in real world data sets a high amount of CLE images
is corrupted by artifacts. Amongst the most prevalent artifact types are
motion-induced image deteriorations. In the scope of this work, algorithmic
approaches for the automatic detection of motion artifact-tainted image regions
were developed. Hence, this work provides an important step towards clinical
applicability of automatic carcinoma detection. Both, conventional machine
learning and novel, deep learning-based approaches were assessed. The deep
learning-based approach outperforms the conventional approaches, attaining an
AUC of 0.90
Automatic Detection of Proliferative Diabetic Retinopathy with Hybrid Feature Extraction Based on Scale Space Analysis and Tracking
Feature extraction is a process to obtain the characteristics or features of an object where the value of the features will be used for analysis in the next process. In retinal image, extraction of blood vessels' characteristics can be used for detection of proliferative diabetic retinopathy (PDR). Retinal blood vessels' features can be obtained directly with segmented image and with additional spatial method. For PDR detection, we need the suitable method that can produce maximum feature representation. This paper proposed hybrid feature extraction using a scale space analysis method and tracking with Bayesian probability. The result of the retinal images classification from STARE database using soft threshold m-Mediods classifier shows the best accuracy of 98.1%
An Automatic Human Face Detection Method
This article contains a proposal for an automatic human face detection method, that tries to join several theories proposed by different authors. The method is based on detection of shape features (eye pairs) and skin color. The method assumes certain circumstances and constraints, respectively. Therefore it is not applicable universally. Given the constraints, it is effective enough for applications where fast execution is required. Test results are given and at the end some directives for future work are discussed
Detecting Slow Wave Sleep Using a Single EEG Signal Channel
Background: In addition to the cost and complexity of processing multiple signal channels, manual sleep staging is also tedious, time consuming, and error-prone. The aim of this paper is to propose an automatic slow wave sleep (SWS) detection method that uses only one channel of the electroencephalography (EEG) signal.
New Method: The proposed approach distinguishes itself from previous automatic sleep staging methods by using three specially designed feature groups. The first feature group characterizes the waveform pattern of the EEG signal. The remaining two feature groups are developed to resolve the difficulties caused by interpersonal EEG signal differences.
Results and comparison with existing methods: The proposed approach was tested with 1,003 subjects, and the SWS detection results show kappa coefficient at 0.66, an accuracy level of 0.973, a sensitivity score of 0.644 and a positive predictive value of 0.709. By excluding sleep apnea patients and persons whose age is older than 55, the SWS detection results improved to kappa coefficient, 0.76; accuracy, 0.963; sensitivity, 0.758; and positive predictive value, 0.812.
Conclusions: With newly developed signal features, this study proposed and tested a single-channel EEG-based SWS detection method. The effectiveness of the proposed approach was demonstrated by applying it to detect the SWS of 1003 subjects. Our test results show that a low SWS ratio and sleep apnea can degrade the performance of SWS detection. The results also show that a large and accurately staged sleep dataset is of great importance when developing automatic sleep staging methods
- …
