4 research outputs found

    Object Detection in Equirectangular Panorama

    Full text link
    We introduced a high-resolution equirectangular panorama (360-degree, virtual reality) dataset for object detection and propose a multi-projection variant of YOLO detector. The main challenge with equirectangular panorama image are i) the lack of annotated training data, ii) high-resolution imagery and iii) severe geometric distortions of objects near the panorama projection poles. In this work, we solve the challenges by i) using training examples available in the "conventional datasets" (ImageNet and COCO), ii) employing only low-resolution images that require only moderate GPU computing power and memory, and iii) our multi-projection YOLO handles projection distortions by making multiple stereographic sub-projections. In our experiments, YOLO outperforms the other state-of-art detector, Faster RCNN and our multi-projection YOLO achieves the best accuracy with low-resolution input.Comment: 6 page

    Automatic Content-aware Projection for 360{\deg} Videos

    Full text link
    To watch 360{\deg} videos on normal 2D displays, we need to project the selected part of the 360{\deg} image onto the 2D display plane. In this paper, we propose a fully-automated framework for generating content-aware 2D normal-view perspective videos from 360{\deg} videos. Especially, we focus on the projection step preserving important image contents and reducing image distortion. Basically, our projection method is based on Pannini projection model. At first, the salient contents such as linear structures and salient regions in the image are preserved by optimizing the single Panini projection model. Then, the multiple Panini projection models at salient regions are interpolated to suppress image distortion globally. Finally, the temporal consistency for image projection is enforced for producing temporally stable normal-view videos. Our proposed projection method does not require any user-interaction and is much faster than previous content-preserving methods. It can be applied to not only images but also videos taking the temporal consistency of projection into account. Experiments on various 360{\deg} videos show the superiority of the proposed projection method quantitatively and qualitatively.Comment: Accepted to International Conference on Computer Vision (ICCV), 201

    Snap Angle Prediction for 360∘^{\circ} Panoramas

    Full text link
    360∘^{\circ} panoramas are a rich medium, yet notoriously difficult to visualize in the 2D image plane. We explore how intelligent rotations of a spherical image may enable content-aware projection with fewer perceptible distortions. Whereas existing approaches assume the viewpoint is fixed, intuitively some viewing angles within the sphere preserve high-level objects better than others. To discover the relationship between these optimal snap angles and the spherical panorama's content, we develop a reinforcement learning approach for the cubemap projection model. Implemented as a deep recurrent neural network, our method selects a sequence of rotation actions and receives reward for avoiding cube boundaries that overlap with important foreground objects. We show our approach creates more visually pleasing panoramas while using 5x less computation than the baseline.Comment: ECCV 201

    Wide-angle Image Rectification: A Survey

    Full text link
    Wide field-of-view (FOV) cameras, which capture a larger scene area than narrow FOV cameras, are used in many applications including 3D reconstruction, autonomous driving, and video surveillance. However, wide-angle images contain distortions that violate the assumptions underlying pinhole camera models, resulting in object distortion, difficulties in estimating scene distance, area, and direction, and preventing the use of off-the-shelf deep models trained on undistorted images for downstream computer vision tasks. Image rectification, which aims to correct these distortions, can solve these problems. In this paper, we comprehensively survey progress in wide-angle image rectification from transformation models to rectification methods. Specifically, we first present a detailed description and discussion of the camera models used in different approaches. Then, we summarize several distortion models including radial distortion and projection distortion. Next, we review both traditional geometry-based image rectification methods and deep learning-based methods, where the former formulate distortion parameter estimation as an optimization problem and the latter treat it as a regression problem by leveraging the power of deep neural networks. We evaluate the performance of state-of-the-art methods on public datasets and show that although both kinds of methods can achieve good results, these methods only work well for specific camera models and distortion types. We also provide a strong baseline model and carry out an empirical study of different distortion models on synthetic datasets and real-world wide-angle images. Finally, we discuss several potential research directions that are expected to further advance this area in the future.Comment: Accepted by the International Journal of Computer Vision (IJCV). Both the datasets and source code are available at https://github.com/loong8888/WAI
    corecore