3 research outputs found

    Automated Strategies for Specializing Constraint Logic Programs

    No full text
    We consider the problem of specializing constraint logic programs w.r.t. constrained queries. We follow a transformational approach based on rules and strategies. The use of the rules ensures that the specialized program is equivalent to the initial program w.r.t. a given constrained query. The strategies guide the application of the rules so to derive an efficient specialized program. In this paper we address various issues concerning the development of an automated transformation strategy. In particular, we consider the problems of when and how we should unfold, replace constraints, introduce generalized clauses, and apply the contextual constraint replacement rule. We propose a solution to these problems by adapting to our framework various techniques developed in the field of constraint programming, partial evaluation, and abstract interpretation. In particular, we use: (i) suitable solvers for simplifying constraints, (ii) well-quasi-orders for ensuring the termination of the unfoldings and for activating clause generalizations, and (iii) widening operators for ensuring the termination of the generalization process

    Automated strategies for specializing constraint logic programs

    No full text
    We consider the problem of specializing constraint logic programs w.r.t. constrained queries. We follow a transformational approach based on rules and strategies. The use of the rules ensures that the specialized program is equivalent to the initial program w.r.t. a given constrained query. The strategies guide the application of the rules so to derive an efficient specialized program. In this paper we address various issues concerning the development of an automated transformation strategy. In particular, we consider the problems of when and how we should unfold, replace constraints, introduce generalized clauses, and apply the contextual constraint replacement rule. We propose a solution to these problems by adapting to our framework various techniques developed in the field of constraint programming, partial evaluation, and abstract interpretation. In particular, we use: (i) suitable solvers for simplifying constraints, (ii) well-quasi-orders for ensuring the termination of the unfoldings and for activating clause generalizations, and (iii) widening operators for ensuring the termination of the generalization process
    corecore