2,444 research outputs found

    Automated Approaches for Program Verification and Repair

    Get PDF
    Formal methods techniques, such as verification, analysis, and synthesis,allow programmers to prove properties of their programs, or automatically derive programs from specifications. Making such techniques usable requires care: they must provide useful debugging information, be scalable, and enable automation. This dissertation presents automated analysis and synthesis techniques to ease the debugging of modular verification systems and allow easy access to constraint solvers from functional code. Further, it introduces machine learning based techniques to improve the scalability of off-the-shelf syntax-guided synthesis solvers and techniques to reduce the burden of network administrators writing and analyzing firewalls. We describe the design and implementationof a symbolic execution engine, G2, for non-strict functional languages such as Haskell. We extend G2 to both debug and automate the process of modular verification, and give Haskell programmers easy access to constraints solvers via a library named G2Q. Modular verifiers, such as LiquidHaskell, Dafny, and ESC/Java,allow programmers to write and prove specifications of their code. When a modular verifier fails to verify a program, it is not necessarily because of an actual bug in the program. This is because when verifying a function f, modular verifiers consider only the specification of a called function g, not the actual definition of g. Thus, a modular verifier may fail to prove a true specification of f if the specification of g is too weak. We present a technique, counterfactual symbolic execution, to aid in the debugging of modular verification failures. The approach uses symbolic execution to find concrete counterexamples, in the case of an actual inconsistency between a program and a specification; and abstract counterexamples, in the case that a function specification is too weak. Further, a counterexample-guided inductive synthesis (CEGIS) loop based technique is introduced to fully automate the process of modular verification, by using found counterexamples to automatically infer needed function specifications. The counterfactual symbolic execution and automated specification inference techniques are implemented in G2, and evaluated on existing LiquidHaskell errors and programs. We also leveraged G2 to build a library, G2Q, which allows writing constraint solving problemsdirectly as Haskell code. Users of G2Q can embed specially marked Haskell constraints (Boolean expressions) into their normal Haskell code, while marking some of the variables in the constraint as symbolic. Then, at runtime, G2Q automatically derives values for the symbolic variables that satisfy the constraint, and returns those values to the outside code. Unlike other constraint solving solutions, such as directly calling an SMT solver, G2Q uses symbolic execution to unroll recursive function definitions, and guarantees that the use of G2Q constraints will preserve type correctness. We further consider the problem of synthesizing functions viaa class of tools known as syntax-guided synthesis (SyGuS) solvers. We introduce a machine learning based technique to preprocess SyGuS problems, and reduce the space that the solver must search for a solution in. We demonstrate that the technique speeds up an existing SyGuS solver, CVC4, on a set of SyGuS solver benchmarks. Finally, we describe techniques to ease analysis and repair of firewalls.Firewalls are widely deployed to manage network security. However, firewall systems provide only a primitive interface, in which the specification is given as an ordered list of rules. This makes it hard to manually track and maintain the behavior of a firewall. We introduce a formal semantics for iptables firewall rules via a translation to first-order logic with uninterpreted functions and linear integer arithmetic, which allows encoding of firewalls into a decidable logic. We then describe techniques to automate the analysis and repair of firewalls using SMT solvers, based on user provided specifications of the desired behavior. We evaluate this approach with real world case studies collected from StackOverflow users

    UK security breach investigations report: an analysis of data compromise cases

    Get PDF
    This report, rather than relying on questionnaires and self-reporting, concerns cases that were investigated by the forensic investigation team at 7Safe. Whilst removing any inaccuracies arising from self-reporting, the authors acknowledge that the limitation of the sample size remains. It is hoped that the unbiased reporting by independent investigators has yielded interesting facts about modern security breaches. All data in this study is based on genuine completed breach investigations conducted by the compromise investigation team over the last 18 months

    A demonstration of VEREFOO: an automated framework for virtual firewall configuration

    Get PDF
    Nowadays, security automation exploits the agility characterizing network virtualization to replace the traditional error-prone human operations. This dynamism allows user-specified high-level intents to be rapidly refined into the concrete configuration rules which should be deployed on virtual security functions. In this revolutionary context, this paper proposes the demonstration of a novel security framework based on an optimized approach for the automatic orchestration of virtual distributed firewalls. The framework provides formal guarantees for the firewall configuration correctness and minimizes the size of the firewall allocation scheme and rule set. The framework produces rules that can be deployed on multiple types of real virtual function implementations, such as iptables, eBPF firewalls and Open vSwitch

    Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    Full text link
    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time'' data flow.Comment: 8 pages 4 figure

    Formal analysis of firewall policies

    Get PDF
    This dissertation describes a technique for formally analyzing a firewall security policy using a quasi-reduced multiway decision diagram model. The analysis allows a system administrator to detect and repair errors in the configuration of the firewall without a tedious manual inspection of the firewall rules.;We present four major contributions. First, we describe a set of algorithms for representing a firewall rule set as a multi-way decision diagram and for solving logical queries against that model. We demonstrate the application of these techniques in a tool for analyzing iptables firewalls. Second, we present an extension of our work that enables analysis of systems of connected firewalls and firewalls that use network address translation and other packet mangling rules. Third, we demonstrate a technique for decomposing a network into classes of equivalent hosts. These classes can be used to detect errors in a firewall policy without apriori knowledge of potential vulnerabilities. They can also be used with other firewall testing techniques to ensure comprehensive coverage of the test space. Fourth, we discuss a strategy for partially automating repair of the firewall policy through the use of counterexamples and rule history.;Using these techniques, a system administrator can detect and repair common firewall errors, such as typos, out-of-order rules, and shadowed rules. She can also develop a specification of the behaviors of the firewall and validate the firewall policy against that specification

    Security Evaluation of Substation Network Architectures

    Get PDF
    In recent years, security of industrial control systems has been the main research focus due to the potential cyber-attacks that can impact the physical operations. As a result of these risks, there has been an urgent need to establish a stronger security protection against these threats. Conventional firewalls with stateful rules can be implemented in the critical cyberinfrastructure environment which might require constant updates. Despite the ongoing effort to maintain the rules, the protection mechanism does not restrict malicious data flows and it poses the greater risk of potential intrusion occurrence. The contributions of this thesis are motivated by the aforementioned issues which include a systematic investigation of attack-related scenarios within a substation network in a reliable sense. The proposed work is two-fold: (i) system architecture evaluation and (ii) construction of attack tree for a substation network. Cyber-system reliability remains one of the important factors in determining the system bottleneck for investment planning and maintenance. It determines the longevity of the system operational period with or without any disruption. First, a complete enumeration of existing implementation is exhaustively identified with existing communication architectures (bidirectional) and new ones with strictly unidirectional. A detailed modeling of the extended 10 system architectures has been evaluated. Next, attack tree modeling for potential substation threats is formulated. This quantifies the potential risks for possible attack scenarios within a network or from the external networks. The analytical models proposed in this thesis can serve as a fundamental development that can be further researched

    Network Infrastructure Configuration

    Get PDF
    The nine papers in this special issue focus on network infrastructure configuration and some of the problems encountered in the areas of specification, diagnosis, repair, synthesis, and anonymization

    Security aspects in cloud based condition monitoring of machine tools

    Get PDF
    In the modern competitive environments companies must have rapid production systems that are able to deliver parts that satisfy highest quality standards. Companies have also an increased need for advanced machines equipped with the latest technologies in maintenance to avoid any reduction or interruption of production. Eminent therefore is the need to monitor the health status of the manufacturing equipment in real time and thus try to develop diagnostic technologies for machine tools. This paper lays the foundation for the creation of a safe remote monitoring system for machine tools using a Cloud environment for communication between the customer and the maintenance service company. Cloud technology provides a convenient means for accessing maintenance data anywhere in the world accessible through simple devices such as PC, tablets or smartphones. In this context the safety aspects of a Cloud system for remote monitoring of machine tools becomes crucial and is, thus the focus of this pape
    • …
    corecore