8 research outputs found

    Glaucoma Detection Using Optic Cup and Optic Disc Segmentation

    Full text link

    Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review

    Get PDF
    Glaucoma is a group of eye diseases that have common traits such as, high eye pressure, damage to the Optic Nerve Head and gradual vision loss. It affects peripheral vision and eventually leads to blindness if left untreated. The current common methods of pre-diagnosis of Glaucoma include measurement of Intra-Ocular Pressure (IOP) using Tonometer, Pachymetry, Gonioscopy; which are performed manually by the clinicians. These tests are usually followed by Optic Nerve Head (ONH) Appearance examination for the confirmed diagnosis of Glaucoma. The diagnoses require regular monitoring, which is costly and time consuming. The accuracy and reliability of diagnosis is limited by the domain knowledge of different ophthalmologists. Therefore automatic diagnosis of Glaucoma attracts a lot of attention.This paper surveys the state-of-the-art of automatic extraction of anatomical features from retinal images to assist early diagnosis of the Glaucoma. We have conducted critical evaluation of the existing automatic extraction methods based on features including Optic Cup to Disc Ratio (CDR), Retinal Nerve Fibre Layer (RNFL), Peripapillary Atrophy (PPA), Neuroretinal Rim Notching, Vasculature Shift, etc., which adds value on efficient feature extraction related to Glaucoma diagnosis. © 2013 Elsevier Ltd

    Extraction of Features from Fundus Images for Glaucoma Assessment

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Automated detection of kinks from blood vessels for optic cup segmentation in retinal images

    No full text

    A novel Automatic Optic Disc and Cup Image Segmentation System for Diagnosing Glaucoma using RIGA dataset

    Get PDF
    The optic nerve head (ONH) of the retina is a very important landmark of the fundus and is altered in optic nerve pathology especially glaucoma. Numerous imaging systems are available to capture the retinal fundus and from which some structural parameters can be inferred the retinal fundus camera is one of the most important tools used for this purpose. Currently, the ONH structure examination of the fundus images is conducted by the professionals only by observation. It should be noted that there is a shortage of highly trained professional worldwide. Therefore a reliable and efficient optic disc and cup localization and segmentation algorithms are important for automatic eye disease screening and also for monitoring the progression/remission of the disease Thus in order to develop a system, a retinal fundus image dataset is necessary to train and test the new software systems. The methods for diagnosing glaucoma are reviewed in the first chapter. Various datasets of retinal fundus images that are publically available currently are described and discussed. In the second chapter the techniques for the optic disc and cup segmentations available in the literature is reviewed. While in the third chapter a unique retinal fundus image dataset, called RIGA (retinal images for glaucoma analysis) is presented. In the dataset, the optic disc and cup boundaries are annotated manually by 6 ophthalmologists (glaucoma professionals) independently for total of 4500 images in order to obtain a comprehensive view point as well as to see the variation and agreement between these professionals. Based upon these evaluations, some of the images were filtered based on a statistical analysis in order to increase the reliability. The new optic disc and cup segmentation methodologies are discussed in the fourth chapter. The process starts with a preprocessing step based on a reliable and precise algorithm. Here an Interval Type-II fuzzy entropy based thresholding scheme along with Differential Evolution was applied to determine the location of the optic disc in order to determine the region of interest instead of dealing with the entire image. Then, the processing step is discussed. Two algorithms were applied: one for optic disc segmentation based on an active contour model implemented by level set approach, and the second for optic cup segmentation. For this thresholding was applied to localize the disc. The disc and cup area and centroid are then calculated in order to evaluate them based on the manual annotations of areas and centroid for the filtered images based on the statistical analysis. In the fifth chapter, after segmenting the disc and cup, the clinical parameters in diagnosis of glaucoma such as horizontal and vertical cup to disc ratio (HCDR) and (VCDR) are computed automatically as a post processing step in order to compare the results with the six ophthalmologist’s manual annotations results. The thesis is concluded in chapter six with discussion of future plans

    Modélisation statistique des structures anatomiques de la rétine à partir d'images de fond d'oeil

    Get PDF
    L’examen non-invasif du fond d’oeil permet d’identifier sur la rétine les signes de nombreuses pathologies oculaires qui développent de graves symptômes pour le patient pouvant entraîner la cécité. Le réseau vasculaire rétinien peut de surcroît présenter des signes précurseurs de pathologies cardiovasculaires et cérébro-vasculaires. La rétine, où apparaissent ces pathologies, est constituée de plusieurs structures anatomiques dont la variabilité est importante au sein d’une population saine. Pour autant, les évaluations cliniques actuelles ne prennent pas en compte cette variabilité ce qui ne permet pas de détecter précocement ces pathologies. Ces évaluations se basent sur un ensemble restreint de mesures prélevées à partir de structures dont la segmentation manuelle est réalisable par les experts. De plus, elles sont basées sur un seuillage empirique déterminé par les cliniciens et appliqué sur chacune des mesures afin d’établir un diagnostic. Ainsi, les évaluations cliniques actuelles sont affectées par la grande variabilité des structures anatomiques de la rétine au sein de la population et elles n’évaluent pas les anomalies trop difficiles à mesurer manuellement. Dans ce contexte, il convient de proposer de nouvelles mesures cliniques qui tiennent compte de la variabilité normale à l’aide d’une modélisation statistique des structures anatomiques de la rétine. Cette modélisation statistique permet de mieux comprendre et identifier ce qui est normal et comment l’anatomie et ses attributs varient au sein d’une population saine. Cela permet ainsi d’identifier la présence de pathologies à l’aide de nouvelles mesures cliniques construites en tenant compte de la variabilité des attributs de l’anatomie. La modélisation statistique des structures anatomiques de la rétine est cependant difficile étant donné les variations morphologiques et topologiques de ces structures. Les changements morphologiques et topologiques du réseau vasculaire rétinien compliquent son analyse statistique ainsi que les outils de recalage, de segmentation et de représentation sémantique s’y appliquant. Les questions de recherches adressées dans cette thèse sont la production d’outils capables d’analyser la variabilité des structures anatomiques de la rétine et l’élaboration de nouvelles mesures cliniques tenant compte de la variabilité normale de ces structures. Pour répondre à ces questions de recherche, trois objectifs de recherche sont formulés. ----------ABSTRACT: Non-invasive retinal fundus examination allows clinicians to identify signs of many ocular conditions that develop critical symptoms affecting the patient and even leading to blindness. In addition, the retinal vascular network may present early signs of cardiovascular and cerebrovascular diseases. The retina, where these pathologies appear, is composed of several anatomical structures whose variability is considerable within a healthy population. Yet, current clinical evaluations do not take into account this variability, and this does not allow early detection of these pathologies. These evaluations are based on a limited set of measurements taken from structures whose manual segmentation is achievable by the experts. In addition, they are based on empirical thresholding determined by the clinicians and applied to each of the measurements to establish a diagnosis. Thus, current clinical assessments are affected by the large variability of anatomical structures of the retina within a healthy population and do not evaluate abnormalities that are too difficult to measure manually. In this context, it is advisable to propose new clinical measurements that take into account the normal variability using statistical modeling of the anatomical structures of the retina. Such a statistical modeling approach helps us to better understand and identify what is normal and how the anatomy and its attributes vary across a healthy population. This makes it possible to identify the presence of pathologies using new clinical measurements constructed by taking into account the variability of the anatomy’s attributes. Statistical modeling of the anatomical structures of the retina is difficult, however, given the morphological and topological variations of these structures. Morphological and topological changes in the retinal vascular network complicate its statistical analysis as well as the registration methods, segmentation and semantic representation applied to it. The research questions proposed in this thesis pertain to creating tools capable of analyzing the variability of the anatomical structures of the retina and proposing new clinical measures that take into account the normal variability of those structures. To answer these research questions, three research objectives are formulated
    corecore