2,838 research outputs found

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    MiniScope: Automated UI Exploration and Privacy Inconsistency Detection of MiniApps via Two-phase Iterative Hybrid Analysis

    Full text link
    The advent of MiniApps, operating within larger SuperApps, has revolutionized user experiences by offering a wide range of services without the need for individual app downloads. However, this convenience has raised significant privacy concerns, as these MiniApps often require access to sensitive data, potentially leading to privacy violations. Our research addresses the critical gaps in the analysis of MiniApps' privacy practices, especially focusing on WeChat MiniApps in the Android ecosystem. Despite existing privacy regulations and platform guidelines, there is a lack of effective mechanisms to safeguard user privacy fully. We introduce MiniScope, a novel two-phase hybrid analysis approach, specifically designed for the MiniApp environment. This approach overcomes the limitations of existing static analysis techniques by incorporating dynamic UI exploration for complete code coverage and accurate privacy practice identification. Our methodology includes modeling UI transition states, resolving cross-package callback control flows, and automated iterative UI exploration. This allows for a comprehensive understanding of MiniApps' privacy practices, addressing the unique challenges of sub-package loading and event-driven callbacks. Our empirical evaluation of over 120K MiniApps using MiniScope demonstrates its effectiveness in identifying privacy inconsistencies. The results reveal significant issues, with 5.7% of MiniApps over-collecting private data and 33.4% overclaiming data collection. These findings emphasize the urgent need for more precise privacy monitoring systems and highlight the responsibility of SuperApp operators to enforce stricter privacy measures

    An analysis of android malware classification services

    Get PDF
    The increasing number of Android malware forced antivirus (AV) companies to rely on automated classification techniques to determine the family and class of suspicious samples. The research community relies heavily on such labels to carry out prevalence studies of the threat ecosystem and to build datasets that are used to validate and benchmark novel detection and classification methods. In this work, we carry out an extensive study of the Android malware ecosystem by surveying white papers and reports from 6 key players in the industry, as well as 81 papers from 8 top security conferences, to understand how malware datasets are used by both. We, then, explore the limitations associated with the use of available malware classification services, namely VirusTotal (VT) engines, for determining the family of an Android sample. Using a dataset of 2.47 M Android malware samples, we find that the detection coverage of VT's AVs is generally very low, that the percentage of samples flagged by any 2 AV engines does not go beyond 52%, and that common families between any pair of AV engines is at best 29%. We rely on clustering to determine the extent to which different AV engine pairs agree upon which samples belong to the same family (regardless of the actual family name) and find that there are discrepancies that can introduce noise in automatic label unification schemes. We also observe the usage of generic labels and inconsistencies within the labels of top AV engines, suggesting that their efforts are directed towards accurate detection rather than classification. Our results contribute to a better understanding of the limitations of using Android malware family labels as supplied by common AV engines.This work has been supported by the “Ramon y Cajal” Fellowship RYC-2020-029401

    Stack Overflow: A Code Laundering Platform?

    Full text link
    Developers use Question and Answer (Q&A) websites to exchange knowledge and expertise. Stack Overflow is a popular Q&A website where developers discuss coding problems and share code examples. Although all Stack Overflow posts are free to access, code examples on Stack Overflow are governed by the Creative Commons Attribute-ShareAlike 3.0 Unported license that developers should obey when reusing code from Stack Overflow or posting code to Stack Overflow. In this paper, we conduct a case study with 399 Android apps, to investigate whether developers respect license terms when reusing code from Stack Overflow posts (and the other way around). We found 232 code snippets in 62 Android apps from our dataset that were potentially reused from Stack Overflow, and 1,226 Stack Overflow posts containing code examples that are clones of code released in 68 Android apps, suggesting that developers may have copied the code of these apps to answer Stack Overflow questions. We investigated the licenses of these pieces of code and observed 1,279 cases of potential license violations (related to code posting to Stack overflow or code reuse from Stack overflow). This paper aims to raise the awareness of the software engineering community about potential unethical code reuse activities taking place on Q&A websites like Stack Overflow.Comment: In proceedings of the 24th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER

    Explainable AI for Android Malware Detection: Towards Understanding Why the Models Perform So Well?

    Full text link
    Machine learning (ML)-based Android malware detection has been one of the most popular research topics in the mobile security community. An increasing number of research studies have demonstrated that machine learning is an effective and promising approach for malware detection, and some works have even claimed that their proposed models could achieve 99\% detection accuracy, leaving little room for further improvement. However, numerous prior studies have suggested that unrealistic experimental designs bring substantial biases, resulting in over-optimistic performance in malware detection. Unlike previous research that examined the detection performance of ML classifiers to locate the causes, this study employs Explainable AI (XAI) approaches to explore what ML-based models learned during the training process, inspecting and interpreting why ML-based malware classifiers perform so well under unrealistic experimental settings. We discover that temporal sample inconsistency in the training dataset brings over-optimistic classification performance (up to 99\% F1 score and accuracy). Importantly, our results indicate that ML models classify malware based on temporal differences between malware and benign, rather than the actual malicious behaviors. Our evaluation also confirms the fact that unrealistic experimental designs lead to not only unrealistic detection performance but also poor reliability, posing a significant obstacle to real-world applications. These findings suggest that XAI approaches should be used to help practitioners/researchers better understand how do AI/ML models (i.e., malware detection) work -- not just focusing on accuracy improvement.Comment: Accepted by the 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE 2022

    A Study of Learning Environment for Initiating Flutter App Development Using Docker

    Get PDF
    The Flutter framework with Dart programming allows developers to effortlessly build applications for both web and mobile from a single codebase. It enables efficient conversions to native codes for mobile apps and optimized JavaScript for web browsers. Since utilizing a wide range of widgets in Flutter ensures consistent experiences on various devices for users, it becomes crucial in programming education by providing a unified environment for learning app development while reducing the need for platform-specific knowledge. However, the setup of the Flutter environment is challenging for novice students due to its multiple steps, such as installing dependencies and configuring environments. To support independent learning for these students, it is essential to simplify the setup by providing user-friendly instructions and automated tools. In this paper, we present a Docker-based environment for Flutter app developments across Windows, Linux, and Mac through Visual Studio Code, ensuring a unified learning experience. This paper aims to simplify complex configurations and address the obstacles encountered by students when initiating Flutter projects. For the evaluation, we prepared three simple Flutter projects along with the setup environment in a Docker container. Then, we asked 24 Master's students at Okayama University, Japan, to install the environment and modify the source codes in the projects independently by following the given instructions. The results show that all the students successfully completed the assignments, which confirms the efficiency and validity of our proposal

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201
    • …
    corecore