149 research outputs found

    Abstractive Multi-Document Summarization via Phrase Selection and Merging

    Full text link
    We propose an abstraction-based multi-document summarization framework that can construct new sentences by exploring more fine-grained syntactic units than sentences, namely, noun/verb phrases. Different from existing abstraction-based approaches, our method first constructs a pool of concepts and facts represented by phrases from the input documents. Then new sentences are generated by selecting and merging informative phrases to maximize the salience of phrases and meanwhile satisfy the sentence construction constraints. We employ integer linear optimization for conducting phrase selection and merging simultaneously in order to achieve the global optimal solution for a summary. Experimental results on the benchmark data set TAC 2011 show that our framework outperforms the state-of-the-art models under automated pyramid evaluation metric, and achieves reasonably well results on manual linguistic quality evaluation.Comment: 11 pages, 1 figure, accepted as a full paper at ACL 201

    Evaluating Content Selection in Human- or Machine-Generated Summaries: The Pyramid Scoring Method

    Get PDF
    From the outset of automated generation of summaries, the difficulty of evaluation has been widely discussed. Despite many promising attempts, we believe it remains an unsolved problem. Here we present a method for scoring the content of summaries of any length against a weighted inventory of content units, which we refer to as a pyramid. Our method is derived from empirical analysis of human-generated summaries, and provides an informative metric for human or machine-generated summaries

    A graph-theoretic summary evaluation for ROUGE

    Full text link
    ROUGE is one of the first and most widely used evaluation metrics for text summarization. However, its assessment merely relies on surface similarities between peer and model summaries. Consequently, ROUGE is unable to fairly evaluate summaries including lexical variations and paraphrasing. We propose a graph-based approach adopted into ROUGE to evaluate summaries based on both lexical and semantic similarities. Experiment results over TAC AESOP datasets show that exploiting the lexico-semantic similarity of the words used in summaries would significantly help ROUGE correlate better with human judgments

    Abstractive news summarization based on event semantic link network

    Get PDF
    This paper studies the abstractive multi-document summarization for event-oriented news texts through event information extraction and abstract representation. Fine-grained event mentions and semantic relations between them are extracted to build a unified and connected event semantic link network, an abstract representation of source texts. A network reduction algorithm is proposed to summarize the most salient and coherent event information. New sentences with good linguistic quality are automatically generated and selected through sentences over-generation and greedy-selection processes. Experimental results on DUC2006 and DUC2007 datasets show that our system significantly outperforms the state-of-the-art extractive and abstractive baselines under both pyramid and ROUGE evaluation metrics

    Principled Approaches to Automatic Text Summarization

    Get PDF
    Automatic text summarization is a particularly challenging Natural Language Processing (NLP) task involving natural language understanding, content selection and natural language generation. In this thesis, we concentrate on the content selection aspect, the inherent problem of summarization which is controlled by the notion of information Importance. We present a simple and intuitive formulation of the summarization task as two components: a summary scoring function θ measuring how good a text is as a summary of the given sources, and an optimization technique O extracting a summary with a high score according to θ. This perspective offers interesting insights over previous summarization efforts and allows us to pinpoint promising research directions. In particular, we realize that previous works heavily constrained the summary scoring function in order to solve convenient optimization problems (e.g., Integer Linear Programming). We question this assumption and demonstrate that General Purpose Optimization (GPO) techniques like genetic algorithms are practical. These GPOs do not require mathematical properties from the objective function and, thus, the summary scoring function can be relieved from its previously imposed constraints. Additionally, the summary scoring function can be evaluated on its own based on its ability to correlate with humans. This offers a principled way of examining the inner workings of summarization systems and complements the traditional evaluations of the extracted summaries. In fact, evaluation metrics are also summary scoring functions which should correlate well with humans. Thus, the two main challenges of summarization, the evaluation and the development of summarizers, are unified within the same setup: discovering strong summary scoring functions. Hence, we investigated ways of uncovering such functions. First, we conducted an empirical study of learning the summary scoring function from data. The results show that an unconstrained summary scoring function is better able to correlate with humans. Furthermore, an unconstrained summary scoring function optimized approximately with GPO extracts better summaries than a constrained summary scoring function optimized exactly with, e.g., ILP. Along the way, we proposed techniques to leverage the small and biased human judgment datasets. Additionally, we released a new evaluation metric explicitly trained to maximize its correlation with humans. Second, we developed a theoretical formulation of the notion of Importance. In a framework rooted in information theory, we defined the quantities: Redundancy, Relevance and Informativeness. Importance arises as the notion unifying these concepts. More generally, Importance is the measure that guides which choices to make when information must be discarded. Finally, evaluation remains an open-problem with a massive impact on summarization progress. Thus, we conducted experiments on available human judgment datasets commonly used to compare evaluation metrics. We discovered that these datasets do not cover the high-quality range in which summarization systems and evaluation metrics operate. This motivates efforts to collect human judgments for high-scoring summaries as this would be necessary to settle the debate over which metric to use. This would also be greatly beneficial for improving summarization systems and metrics alike
    • …
    corecore