4,234 research outputs found

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practiceā€“aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Theoretical and Computational Basis for CATNETS - Annual Report Year 3

    Get PDF
    In this document the developments in defining the computational and theoretical framework for economical resource allocation are described. Accordingly the formal specification of the market mechanisms, bidding strategies of the involved agents and the integration of the market mechanisms into the simulator were refined. --Grid Computing

    Theoretical and Computational Basis for CATNETS - Annual Report Year 2

    Get PDF
    In this work the self-organising potential of the CATNETS allocation mechanism is described to provide a more comprehensive view on the research done in this project. The formal description of either the centralised and decentralised approach is presented. Furthermore the agents' bidding model is described and a comprehensive overview on how the catallactic mechanism is incorporated into the middleware and simulator environments is given. --Decentralized Market Mechanisms,Centralized Market Mechanisms,Catallaxy,Market Engineering,Simulator Integration,Prototype Integration

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    Simulator Development - Annual Report Year 3

    Get PDF
    This document describes the progress of the simulator development with in the third year of the CATNETS project. The refinement of the simulator as well as a detailed guide to conducting simulations is presented. --Grid Computing

    A scalability analysis of grid allocation mechanisms

    Get PDF
    This article examines the broker's behavior with regard to a varying number of participating nodes and shows that incremental losses have to be accepted in central resource allocation when introducing new nodes. --Grid Computing

    Introducing risk management into the grid

    Get PDF
    Service Level Agreements (SLAs) are explicit statements about all expectations and obligations in the business partnership between customers and providers. They have been introduced in Grid computing to overcome the best effort approach, making the Grid more interesting for commercial applications. However, decisions on negotiation and system management still rely on static approaches, not reflecting the risk linked with decisions. The EC-funded project "AssessGrid" aims at introducing risk assessment and management as a novel decision paradigm into Grid computing. This paper gives a general motivation for risk management and presents the envisaged architecture of a "risk-aware" Grid middleware and Grid fabric, highlighting its functionality by means of three showcase scenarios

    SettleBot: A Negotiation Model for the Agent Based Commercial Grid

    Get PDF
    • ā€¦
    corecore