4,990 research outputs found

    Automated Latent Fingerprint Recognition

    Full text link
    Latent fingerprints are one of the most important and widely used evidence in law enforcement and forensic agencies worldwide. Yet, NIST evaluations show that the performance of state-of-the-art latent recognition systems is far from satisfactory. An automated latent fingerprint recognition system with high accuracy is essential to compare latents found at crime scenes to a large collection of reference prints to generate a candidate list of possible mates. In this paper, we propose an automated latent fingerprint recognition algorithm that utilizes Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae descriptor extraction, and extract complementary templates (two minutiae templates and one texture template) to represent the latent. The comparison scores between the latent and a reference print based on the three templates are fused to retrieve a short candidate list from the reference database. Experimental results show that the rank-1 identification accuracies (query latent is matched with its true mate in the reference database) are 64.7% for the NIST SD27 and 75.3% for the WVU latent databases, against a reference database of 100K rolled prints. These results are the best among published papers on latent recognition and competitive with the performance (66.7% and 70.8% rank-1 accuracies on NIST SD27 and WVU DB, respectively) of a leading COTS latent Automated Fingerprint Identification System (AFIS). By score-level (rank-level) fusion of our system with the commercial off-the-shelf (COTS) latent AFIS, the overall rank-1 identification performance can be improved from 64.7% and 75.3% to 73.3% (74.4%) and 76.6% (78.4%) on NIST SD27 and WVU latent databases, respectively

    ID Preserving Generative Adversarial Network for Partial Latent Fingerprint Reconstruction

    Full text link
    Performing recognition tasks using latent fingerprint samples is often challenging for automated identification systems due to poor quality, distortion, and partially missing information from the input samples. We propose a direct latent fingerprint reconstruction model based on conditional generative adversarial networks (cGANs). Two modifications are applied to the cGAN to adapt it for the task of latent fingerprint reconstruction. First, the model is forced to generate three additional maps to the ridge map to ensure that the orientation and frequency information is considered in the generation process, and prevent the model from filling large missing areas and generating erroneous minutiae. Second, a perceptual ID preservation approach is developed to force the generator to preserve the ID information during the reconstruction process. Using a synthetically generated database of latent fingerprints, the deep network learns to predict missing information from the input latent samples. We evaluate the proposed method in combination with two different fingerprint matching algorithms on several publicly available latent fingerprint datasets. We achieved the rank-10 accuracy of 88.02\% on the IIIT-Delhi latent fingerprint database for the task of latent-to-latent matching and rank-50 accuracy of 70.89\% on the IIIT-Delhi MOLF database for the task of latent-to-sensor matching. Experimental results of matching reconstructed samples in both latent-to-sensor and latent-to-latent frameworks indicate that the proposed method significantly increases the matching accuracy of the fingerprint recognition systems for the latent samples.Comment: Accepted in BTAS 201

    End-to-End Latent Fingerprint Search

    Full text link
    Latent fingerprints are one of the most important and widely used sources of evidence in law enforcement and forensic agencies. Yet the performance of the state-of-the-art latent recognition systems is far from satisfactory, and they often require manual markups to boost the latent search performance. Further, the COTS systems are proprietary and do not output the true comparison scores between a latent and reference prints to conduct quantitative evidential analysis. We present an end-to-end latent fingerprint search system, including automated region of interest (ROI) cropping, latent image preprocessing, feature extraction, feature comparison , and outputs a candidate list. Two separate minutiae extraction models provide complementary minutiae templates. To compensate for the small number of minutiae in small area and poor quality latents, a virtual minutiae set is generated to construct a texture template. A 96-dimensional descriptor is extracted for each minutia from its neighborhood. For computational efficiency, the descriptor length for virtual minutiae is further reduced to 16 using product quantization. Our end-to-end system is evaluated on three latent databases: NIST SD27 (258 latents); MSP (1,200 latents), WVU (449 latents) and N2N (10,000 latents) against a background set of 100K rolled prints, which includes the true rolled mates of the latents with rank-1 retrieval rates of 65.7%, 69.4%, 65.5%, and 7.6% respectively. A multi-core solution implemented on 24 cores obtains 1ms per latent to rolled comparison

    An Efficient Automatic Attendance System Using Fingerprint Reconstruction Technique

    Full text link
    Biometric time and attendance system is one of the most successful applications of biometric technology. One of the main advantage of a biometric time and attendance system is it avoids "buddy-punching". Buddy punching was a major loophole which will be exploiting in the traditional time attendance systems. Fingerprint recognition is an established field today, but still identifying individual from a set of enrolled fingerprints is a time taking process. Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. This belief has now been shown to be false; several algorithms have been proposed that can reconstruct fingerprint images from minutiae templates. In this paper, a novel fingerprint reconstruction algorithm is proposed to reconstruct the phase image, which is then converted into the grayscale image. The proposed reconstruction algorithm reconstructs the phase image from minutiae. The proposed reconstruction algorithm is used to automate the whole process of taking attendance, manually which is a laborious and troublesome work and waste a lot of time, with its managing and maintaining the records for a period of time is also a burdensome task. The proposed reconstruction algorithm has been evaluated with respect to the success rates of type-I attack (match the reconstructed fingerprint against the original fingerprint) and type-II attack (match the reconstructed fingerprint against different impressions of the original fingerprint) using a commercial fingerprint recognition system. Given the reconstructed image from our algorithm, we show that both types of attacks can be effectively launched against a fingerprint recognition system.Comment: 6pages,5figure

    A Fully Automated Latent Fingerprint Matcher with Embedded Self-learning Segmentation Module

    Full text link
    Latent fingerprint has the practical value to identify the suspects who have unintentionally left a trace of fingerprint in the crime scenes. However, designing a fully automated latent fingerprint matcher is a very challenging task as it needs to address many challenging issues including the separation of overlapping structured patterns over the partial and poor quality latent fingerprint image, and finding a match against a large background database that would have different resolutions. Currently there is no fully automated latent fingerprint matcher available to the public and most literature reports have utilized a specialized latent fingerprint matcher COTS3 which is not accessible to the public. This will make it infeasible to assess and compare the relevant research work which is vital for this research community. In this study, we target to develop a fully automated latent matcher for adaptive detection of the region of interest and robust matching of latent prints. Unlike the manually conducted matching procedure, the proposed latent matcher can run like a sealed black box without any manual intervention. This matcher consists of the following two modules: (i) the dictionary learning-based region of interest (ROI) segmentation scheme; and (ii) the genetic algorithm-based minutiae set matching unit. Experimental results on NIST SD27 latent fingerprint database demonstrates that the proposed matcher outperforms the currently public state-of-art latent fingerprint matcher

    Generative Convolutional Networks for Latent Fingerprint Reconstruction

    Full text link
    Performance of fingerprint recognition depends heavily on the extraction of minutiae points. Enhancement of the fingerprint ridge pattern is thus an essential pre-processing step that noticeably reduces false positive and negative detection rates. A particularly challenging setting is when the fingerprint images are corrupted or partially missing. In this work, we apply generative convolutional networks to denoise visible minutiae and predict the missing parts of the ridge pattern. The proposed enhancement approach is tested as a pre-processing step in combination with several standard feature extraction methods such as MINDTCT, followed by biometric comparison using MCC and BOZORTH3. We evaluate our method on several publicly available latent fingerprint datasets captured using different sensors

    Automated Region Masking Of Latent Overlapped Fingerprints

    Full text link
    Fingerprints have grown to be the most robust and efficient means of biometric identification. Latent fingerprints are commonly found at crime scenes. They are also of the overlapped kind making it harder for identification and thus the separation of overlapped fingerprints has been a conundrum to surpass. The usage of dedicated software has resulted in a manual approach to region masking of the two given overlapped fingerprints. The region masks are then further used to separate the fingerprints. This requires the user's physical concentration to acquire the separate region masks, which are found to be time-consuming. This paper proposes a novel algorithm that is fully automated in its approach to region masking the overlapped fingerprint image. The algorithm recognizes a unique approach of using blurring, erosion, and dilation in order to attain the desired automated region masks. The experiments conducted visually demonstrate the effectiveness of the algorithm.Comment: Accepted and presented in I-PACT international IEEE conference on 21st and 22nd Apri

    Latent Fingerprint Recognition: Role of Texture Template

    Full text link
    We propose a texture template approach, consisting of a set of virtual minutiae, to improve the overall latent fingerprint recognition accuracy. To compensate for the lack of sufficient number of minutiae in poor quality latent prints, we generate a set of virtual minutiae. However, due to a large number of these regularly placed virtual minutiae, texture based template matching has a large computational requirement compared to matching true minutiae templates. To improve both the accuracy and efficiency of the texture template matching, we investigate: i) both original and enhanced fingerprint patches for training convolutional neural networks (ConvNets) to improve the distinctiveness of descriptors associated with each virtual minutiae, ii) smaller patches around virtual minutiae and a fast ConvNet architecture to speed up descriptor extraction, iii) reduce the descriptor length, iv) a modified hierarchical graph matching strategy to improve the matching speed, and v) extraction of multiple texture templates to boost the performance. Experiments on NIST SD27 latent database show that the above strategies can improve the matching speed from 11 ms (24 threads) per comparison (between a latent and a reference print) to only 7.7 ms (single thread) per comparison while improving the rank-1 accuracy by 8.9% against 10K gallery

    FingerNet: An Unified Deep Network for Fingerprint Minutiae Extraction

    Full text link
    Minutiae extraction is of critical importance in automated fingerprint recognition. Previous works on rolled/slap fingerprints failed on latent fingerprints due to noisy ridge patterns and complex background noises. In this paper, we propose a new way to design deep convolutional network combining domain knowledge and the representation ability of deep learning. In terms of orientation estimation, segmentation, enhancement and minutiae extraction, several typical traditional methods performed well on rolled/slap fingerprints are transformed into convolutional manners and integrated as an unified plain network. We demonstrate that this pipeline is equivalent to a shallow network with fixed weights. The network is then expanded to enhance its representation ability and the weights are released to learn complex background variance from data, while preserving end-to-end differentiability. Experimental results on NIST SD27 latent database and FVC 2004 slap database demonstrate that the proposed algorithm outperforms the state-of-the-art minutiae extraction algorithms. Code is made publicly available at: https://github.com/felixTY/FingerNet

    Performance Measurement and Method Analysis (PMMA) for Fingerprint Reconstruction

    Get PDF
    Fingerprint reconstruction is one of the most well-known and publicized biometrics. Because of their uniqueness and consistency over time, fingerprints have been used for identification over a century, more recently becoming automated due to advancements in computed capabilities. Fingerprint reconstruction is popular because of the inherent ease of acquisition, the numerous sources (e.g. ten fingers) available for collection, and their established use and collections by law enforcement and immigration. Fingerprints have always been the most practical and positive means of identification. Offenders, being well aware of this, have been coming up with ways to escape identification by that means. Erasing left over fingerprints, using gloves, fingerprint forgery; are certain examples of methods tried by them, over the years. Failing to prevent themselves, they moved to an extent of mutilating their finger skin pattern, to remain unidentified. This article is based upon obliteration of finger ridge patterns and discusses some known cases in relation to the same, in chronological order; highlighting the reasons why offenders go to an extent of performing such act. The paper gives an overview of different methods and performance measurement of the fingerprint reconstruction.Comment: 4pages,1 figure,1 tabl
    • …
    corecore