117 research outputs found

    Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences

    Full text link
    Analyzing and reasoning about safety properties of software systems becomes an especially challenging task for programs with complex flow and, in particular, with loops or recursion. For such programs one needs additional information, for example in the form of loop invariants, expressing properties to hold at intermediate program points. In this paper we study program loops with non-trivial arithmetic, implementing addition and multiplication among numeric program variables. We present a new approach for automatically generating all polynomial invariants of a class of such programs. Our approach turns programs into linear ordinary recurrence equations and computes closed form solutions of these equations. These closed forms express the most precise inductive property, and hence invariant. We apply Gr\"obner basis computation to obtain a basis of the polynomial invariant ideal, yielding thus a finite representation of all polynomial invariants. Our work significantly extends the class of so-called P-solvable loops by handling multiplication with the loop counter variable. We implemented our method in the Mathematica package Aligator and showcase the practical use of our approach.Comment: A revised version of this paper is published in the proceedings of ISSAC 201

    Invariant Generation for Multi-Path Loops with Polynomial Assignments

    Full text link
    Program analysis requires the generation of program properties expressing conditions to hold at intermediate program locations. When it comes to programs with loops, these properties are typically expressed as loop invariants. In this paper we study a class of multi-path program loops with numeric variables, in particular nested loops with conditionals, where assignments to program variables are polynomial expressions over program variables. We call this class of loops extended P-solvable and introduce an algorithm for generating all polynomial invariants of such loops. By an iterative procedure employing Gr\"obner basis computation, our approach computes the polynomial ideal of the polynomial invariants of each program path and combines these ideals sequentially until a fixed point is reached. This fixed point represents the polynomial ideal of all polynomial invariants of the given extended P-solvable loop. We prove termination of our method and show that the maximal number of iterations for reaching the fixed point depends linearly on the number of program variables and the number of inner loops. In particular, for a loop with m program variables and r conditional branches we prove an upper bound of m*r iterations. We implemented our approach in the Aligator software package. Furthermore, we evaluated it on 18 programs with polynomial arithmetic and compared it to existing methods in invariant generation. The results show the efficiency of our approach

    (Un)Solvable Loop Analysis

    Full text link
    Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler optimisation, is a challenging open problem. Whilst the problem is in general undecidable, the goal is settled for restricted classes of loops. For the class of solvable loops, introduced by Kapur and Rodr\'iguez-Carbonell in 2004, one can automatically compute invariants from closed-form solutions of recurrence equations that model the loop behaviour. In this paper we establish a technique for invariant synthesis for loops that are not solvable, termed unsolvable loops. Our approach automatically partitions the program variables and identifies the so-called defective variables that characterise unsolvability. Herein we consider the following two applications. First, we present a novel technique that automatically synthesises polynomials from defective monomials, that admit closed-form solutions and thus lead to polynomial loop invariants. Second, given an unsolvable loop, we synthesise solvable loops with the following property: the invariant polynomials of the solvable loops are all invariants of the given unsolvable loop. Our implementation and experiments demonstrate both the feasibility and applicability of our approach to both deterministic and probabilistic programs.Comment: Extended version of the conference paper `Solving Invariant Generation for Unsolvable Loops' published at SAS 2022 (see also the preprint arXiv:2206.06943). We extended both the text and results. 36 page

    Exact Bayesian Inference for Loopy Probabilistic Programs

    Full text link
    We present an exact Bayesian inference method for inferring posterior distributions encoded by probabilistic programs featuring possibly unbounded looping behaviors. Our method is built on an extended denotational semantics represented by probability generating functions, which resolves semantic intricacies induced by intertwining discrete probabilistic loops with conditioning (for encoding posterior observations). We implement our method in a tool called Prodigy; it augments existing computer algebra systems with the theory of generating functions for the (semi-)automatic inference and quantitative verification of conditioned probabilistic programs. Experimental results show that Prodigy can handle various infinite-state loopy programs and outperforms state-of-the-art exact inference tools over benchmarks of loop-free programs

    Templates and Recurrences: Better Together

    Full text link
    This paper is the confluence of two streams of ideas in the literature on generating numerical invariants, namely: (1) template-based methods, and (2) recurrence-based methods. A template-based method begins with a template that contains unknown quantities, and finds invariants that match the template by extracting and solving constraints on the unknowns. A disadvantage of template-based methods is that they require fixing the set of terms that may appear in an invariant in advance. This disadvantage is particularly prominent for non-linear invariant generation, because the user must supply maximum degrees on polynomials, bases for exponents, etc. On the other hand, recurrence-based methods are able to find sophisticated non-linear mathematical relations, including polynomials, exponentials, and logarithms, because such relations arise as the solutions to recurrences. However, a disadvantage of past recurrence-based invariant-generation methods is that they are primarily loop-based analyses: they use recurrences to relate the pre-state and post-state of a loop, so it is not obvious how to apply them to a recursive procedure, especially if the procedure is non-linearly recursive (e.g., a tree-traversal algorithm). In this paper, we combine these two approaches and obtain a technique that uses templates in which the unknowns are functions rather than numbers, and the constraints on the unknowns are recurrences. The technique synthesizes invariants involving polynomials, exponentials, and logarithms, even in the presence of arbitrary control-flow, including any combination of loops, branches, and (possibly non-linear) recursion. For instance, it is able to show that (i) the time taken by merge-sort is O(nlog(n))O(n \log(n)), and (ii) the time taken by Strassen's algorithm is O(nlog2(7))O(n^{\log_2(7)}).Comment: 20 pages, 3 figure

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4
    corecore