550 research outputs found

    Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies

    Get PDF
    The revolution of additive manufacturing (AM) has led to many opportunities in fabricating complex and novel products. The increase of printable materials and the emergence of novel fabrication processes continuously expand the possibility of engineering systems in which product components are no longer limited to be single material, single scale, or single function. In fact, a paradigm shift is taking place in industry from geometry-centered usage to supporting functional demands. Consequently, engineers are expected to resolve a wide range of complex and difficult problems related to functional design. Although a higher degree of design freedom beyond geometry has been enabled by AM, there are only very few computational design approaches in this new AM-enabled domain to design objects with tailored properties and functions. The objectives of this review paper are to provide an overview of recent additive manufacturing developments and current computer-aided design methodologies that can be applied to multimaterial, multiscale, multiform, and multifunctional AM technologies. The difficulties encountered in the computational design approaches are summarized and the future development needs are emphasized. In the paper, some present applications and future trends related to additive manufacturing technologies are also discussed

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Review and Perspectives: Shape Memory Alloy Composite Systems

    Get PDF
    Following their discovery in the early 60's, there has been a continuous quest for ways to take advantage of the extraordinary properties of shape memory alloys (SMAs). These intermetallic alloys can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible difussionless solid-to-solid phase transformation from austenite to martensite. The integration of SMAs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. However, despite substantial research in this area, a comparable adoption of SMA composites by industry has not yet been realized. This discrepancy between academic research and commercial interest is largely associated with the material complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties. Nonetheless, as SMAs are becoming increasingly accepted in engineering applications, a similar trend for SMA composites is expected in aerospace, automotive, and energy conversion and storage related applications. In an effort to aid in this endeavor, a comprehensive overview of advances with regard to SMA composites and devices utilizing them is pursued in this paper. Emphasis is placed on identifying the characteristic responses and properties of these material systems as well as on comparing the various modeling methodologies for describing their response. Furthermore, the paper concludes with a discussion of future research efforts that may have the greatest impact on promoting the development of SMA composites and their implementation in multifunctional structures

    Proceedings of the 2021 DigitalFUTURES

    Get PDF
    This open access book is a compilation of selected papers from 2021 DigitalFUTURES—The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021). The work focuses on novel techniques for computational design and robotic fabrication. The contents make valuable contributions to academic researchers, designers, and engineers in the industry. As well, readers encounter new ideas about understanding material intelligence in architecture

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    MotorSkins—a bio-inspired design approach towards an interactive soft-robotic exosuit

    Get PDF
    The work presents a bio-inspired design approach to a soft-robotic solution for assisting the knee-bending in users with reduced mobility in lower limbs. Exosuits and fluid-driven actuators are fabric-based devices that are gaining increasing relevance as alternatives assistive technologies that can provide simpler, more flexible solutions in comparison with the rigid exoskeletons. These devices, however, commonly require an external energy supply or a pressurized-fluid reservoir, which considerably constrain the autonomy of such solutions. In this work, we introduce an event-based energy cycle (EBEC) design concept, that can harvest, store, and release the required energy for assisting the knee-bending, in a synchronised interaction with the user and the environment, thus eliminating any need for external energy or control input. Ice-plant hydro-actuation system served as the source of inspiration to address the specific requirements of such interactive exosuit through a fluid-driven material system. Based on the EBEC design concepts and the abstracted bio-inspired principles, a series of (material and process driven) design experimentations helped to address the challenges of realising various functionalities of the harvest, storage, actuation and control instances within a closed hydraulic circuit. Sealing and defining various areas of water-tight seam made out of thermoplastic elastomers provided the base material system to program various chambers, channels, flow-check valves etc of such EBEC system. The resulting fluid-driven EBEC-skin served as a proof of concept for such active exosuit, that brings these functionalities into an integrated ‘sense-acting’ material system, realising an auto-synchronised energy and information cycles. The proposed design concept can serve as a model for development of similar fluid-driven EBEC soft-machines for further applications. On the more general scheme, the work presents an interdisciplinary design-science approach to bio-inspiration and showcases how biological material solutions can be looked at from a design/designer perspective to bridge the bottom–up and top–down approach to bio-inspiration.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Peer Reviewe

    Additive manufacturing and joints: Design and methods

    Get PDF
    The industrialization of the Additive Manufacturing (AM) processes is enabling the use of AM components as final product in several applications. These processes are particularly relevant for manufacturing components with optimized custom-tailored geometries. However, to fully exploit the potentiality of AM, the development of knowledge aimed to produce dedicated design methods is needed. Indeed, even if AM enables the manufacturing of new kinds of structures, e.g. 3D lattice structures, it introduces process-specific design input and limitations that needs design methods different to from the ones for subtractive manufacturing. Design for AM (DfAM) is a design methodology that aims to take advantage of new buildable geometries but taking into account also AM processed materials anisotropy and 3D printing constraints. Recent literature focused on the assembly of AM components and on the AM components joining to a main structure. The conclusion was that adhesive bonding is a promising joining process, especially considering its improved stress distribution compared to fastening, but at the time of writing a method that combines DfAM and adhesive bonding knowledge is not available. The work presented in this thesis focused on developing knowledge on design for AM and bonded joints. First step was evaluating testing methods for AM and producing data on materials properties. Secondly, the early works on tailoring approaches for AM joints, published recently in scientific literature, were analyzed. Then AM dedicated designs, modifications and testing methods were proposed both for the adherends (in the thickness and on the surfaces) and the joints. Specifically, an innovative joint design concept was introduced, i.e. using the 3D printing parameters as bonded joint design factors. Eventually, feasibility of performing joints using multi-material AM with conductive polymer to embed heating elements was assessed. The 3D printed through the thickness circuits is a cutting-edge approach to enable new solutions for joints structural monitoring and self-healing
    • 

    corecore