5,911 research outputs found
Implications of Rewiring Bacterial Quorum Sensing
Bacteria employ quorum sensing, a form of cell-cell communication, to sense changes in population density and regulate gene expression accordingly. This work investigated the rewiring of one quorum-sensing module, the lux circuit from the marine bacterium Vibrio fischeri. Steady-state experiments demonstrate that rewiring the network architecture of this module can yield graded, threshold, and bistable gene expression as predicted by a mathematical model. The experiments also show that the native lux operon is most consistent with a threshold, as opposed to a bistable, response. Each of the rewired networks yielded functional population sensors at biologically relevant conditions, suggesting that this operon is particularly robust. These findings (i) permit prediction of the behaviors of quorum-sensing operons in bacterial pathogens and (ii) facilitate forward engineering of synthetic gene circuits
Evolution of primordial magnetic fields in mean-field approximation
We study the evolution of phase-transition-generated cosmic magnetic fields
coupled to the primeval cosmic plasma in turbulent and viscous free-streaming
regimes. The evolution laws for the magnetic energy density and correlation
length, both in helical and non-helical cases, are found by solving the
autoinduction and Navier-Stokes equations in mean-field approximation.
Analytical results are derived in Minkowski spacetime and then extended to the
case of a Friedmann universe with zero spatial curvature, both in radiation and
matter dominated eras. The three possible viscous free-streaming phases are
characterized by a drag term in the Navier-Stokes equation which depends on the
free-streaming properties of neutrinos, photons, or hydrogen atoms,
respectively. In the case of non-helical magnetic fields, the magnetic
intensity and the magnetic correlation length evolve asymptotically
with the temperature as and . Here, , , and are, respectively, the
temperature, the number of magnetic domains per horizon length, and the bulk
velocity at the onset of the particular regime. The coefficients ,
, , , , and , depend on
the index of the assumed initial power-law magnetic spectrum, , and on the
particular regime, with the order-one constants and
depending also on the cut-off adopted for the initial magnetic spectrum. In the
helical case, the quasi-conservation of the magnetic helicity implies, apart
from logarithmic corrections and a factor proportional to the initial
fractional helicity, power-like evolution laws equal to those in the
non-helical case, but with equal to zero.Comment: 38 pages, 4 figures, 2 tables, references added, paraghraph added,
minor changes, results unchanged, to appear in Eur. Phys. J.
Liver Enzyme Abnormalities and Associated Risk Factors in HIV Patients on Efavirenz-Based HAART with or without Tuberculosis Co-Infection in Tanzania.
To investigate the timing, incidence, clinical presentation, pharmacokinetics and pharmacogenetic predictors for antiretroviral and anti-tuberculosis drug induced liver injury (DILI) in HIV patients with or without TB co-infection. A total of 473 treatment naïve HIV patients (253 HIV only and 220 with HIV-TB co-infection) were enrolled prospectively. Plasma efavirenz concentration and CYP2B6*6, CYP3A5*3, *6 and *7, ABCB1 3435C/T and SLCO1B1 genotypes were determined. Demographic, clinical and laboratory data were collected at baseline and up to 48 weeks of antiretroviral therapy. DILI case definition was according to Council for International Organizations of Medical Sciences (CIOMS). Incidence of DILI and identification of predictors was evaluated using Cox Proportional Hazards Model. The overall incidence of DILI was 7.8% (8.3 per 1000 person-week), being non-significantly higher among patients receiving concomitant anti-TB and HAART (10.0%, 10.7 per 1000 person-week) than those receiving HAART alone (5.9%, 6.3 per 1000 person-week). Frequency of CYP2B6*6 allele (p = 0.03) and CYP2B6*6/*6 genotype (p = 0.06) was significantly higher in patients with DILI than those without. Multivariate cox regression model indicated that CYP2B6*6/*6 genotype and anti-HCV IgG antibody positive as significant predictors of DILI. Median time to DILI was 2 weeks after HAART initiation and no DILI onset was observed after 12 weeks. No severe DILI was seen and the gain in CD4 was similar in patients with or without DILI. Antiretroviral and anti-tuberculosis DILI does occur in our setting, presenting early following HAART initiation. DILI seen is mild, transient and may not require treatment interruption. There is good tolerance to HAART and anti-TB with similar immunological outcomes. Genetic make-up mainly CYP2B6 genotype influences the development of efavirenz based HAART liver injury in Tanzanians
The utility of efavirenz-based prophylaxis against HIV infection. A systems pharmacological analysis
Pre-exposure prophylaxis (PrEP) is considered one of the five “pillars” by UNAIDS to reduce HIV transmission. Moreover, it is a tool for female self-protection against HIV, making it highly relevant to sub-Saharan regions, where women have the highest infection burden. To date, Truvada is the only medication for PrEP. However, the cost of Truvada limits its uptake in resource-constrained countries. Similarly, several currently investigated, patent-protected compounds may be unaffordable in these regions. We set out to explore the potential of the patent-expired antiviral efavirenz (EFV) as a cost-efficient PrEP alternative. A population pharmacokinetic model utilizing data from the ENCORE1 study was developed. The model was refined for metabolic autoinduction. We then explored EFV cellular uptake mechanisms, finding that it is largely determined by plasma protein binding. Next, we predicted the prophylactic efficacy of various EFV dosing schemes after exposure to HIV using a stochastic simulation framework. We predicted that plasma concentrations of 11, 36, 1287 and 1486ng/mL prevent 90% sexual transmissions with wild type and Y181C, K103N and G190S mutants, respectively. Trough concentrations achieved after 600 mg once daily dosing (median: 2017 ng/mL, 95% CI:445–9830) and after reduced dose (400 mg) efavirenz (median: 1349ng/mL, 95% CI: 297–6553) provided complete protection against wild-type virus and the Y181C mutant, and median trough concentrations provided about 90% protection against the K103N and G190S mutants. As reduced dose EFV has a lower toxicity profile, we predicted the reduction in HIV infection when 400 mg EFV-PrEP was poorly adhered to, when it was taken “on demand” and as post-exposure prophylaxis (PEP). Once daily EFV-PrEP provided 99% protection against wild-type virus, if ≥50% of doses were taken. PrEP “on demand” provided complete protection against wild-type virus and prevented ≥81% infections in the mutants. PEP could prevent >98% infection with susceptible virus when initiated within 24 h after virus exposure and continued for at least 9 days. We predict that 400 mg oral EFV may provide superior protection against wild-type HIV. However, further studies are warranted to evaluate EFV as a cost-efficient alternative to Truvada. Predicted prophylactic concentrations may guide release kinetics of EFV long-acting formulations for clinical trial design
A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575)
PURPOSE: To establish the recommended phase II dose of the oral γ-secretase inhibitor RO4929097 (RO) in combination with gemcitabine; secondary objectives include the evaluation of safety, tolerability, pharmacokinetics, biomarkers of Notch signaling and preliminary anti-tumor activity. METHODS: Patients with advanced solid tumors were enrolled in cohorts of escalating RO dose levels (DLs). Tested RO DLs were 20 mg, 30 mg, 45 mg and 90 mg. RO was administered orally, once daily on days 1-3, 8-10, 15-17, 22-24. Gemcitabine was administered at 1,000 mg/m(2) on d1, 8, and 15 in 28 d cycles. Dose limiting toxicities (DLTs) were assessed by CTCAE v4. Serial plasma was collected for RO (total and unbound) and gemcitabine pharmacokinetic analysis. Biomarkers of Notch signaling were assessed by immunohistochemistry in archival tissue. Antitumor activity was evaluated (RECIST 1.1). RESULTS: A total of 18 patients were enrolled to establish the recommended phase II dose. Of these, 3 patients received 20 mg RO, 7 patients received 30 mg RO, 6 patients received 45 mg RO and 2 patients received 90 mg RO. DLTs were grade 3 transaminitis (30 mg RO), grade 3 transaminitis and maculopapular rash (45 mg RO), and grade 3 transaminitis and failure to receive 75 % of planned RO doses secondary to prolonged neutropenia (90 mg); all were reversible. The maximum tolerated dose was exceeded at 90 mg RO. Pharmacokinetic analysis of both total and free RO confirmed the presence of autoinduction at 45 and 90 mg. Median levels of Notch3 staining were higher in individuals who received fewer than 4 cycles (p = 0.029). Circulating angiogenic factor levels did not correlate with time to progression or ≥ grade 3 adverse events. Best response (RECIST 1.1) was partial response (nasopharyngeal cancer) and stable disease > 4 months was observed in 3 patients (pancreas, tracheal, and breast primary cancers). CONCLUSIONS: RO and gemcitabine can be safely combined. The recommended phase II dose of RO was 30 mg in combination with gemcitabine 1,000 mg/m(2). Although RO exposure was limited by the presence of autoinduction, RO levels achieved exceeded the area under the concentration-time curve for 0-24 h (AUC(0-24)) predicted for efficacy in preclinical models using daily dosing. Evidence of clinical antitumor activity and prolonged stable disease were identified
Combinatorial quorum sensing allows bacteria to resolve their social and physical environment
Quorum sensing (QS) is a cell–cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay betweeallyn its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic “AND-gate” responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication
Synergy and Group Size in Microbial Cooperation
Microbes produce many molecules that are important for their growth and development, and the consumption of these secretions by nonproducers has recently become an important paradigm in microbial social evolution. Though the production of these public goods molecules has been studied intensely, little is known of how the benefits accrued and costs incurred depend on the quantity of public good molecules produced. We focus here on the relationship between the shape of the benefit curve and cellular density with a model assuming three types of benefit functions: diminishing, accelerating, and sigmoidal (accelerating then diminishing). We classify the latter two as being synergistic and argue that sigmoidal curves are common in microbial systems. Synergistic benefit curves interact with group sizes to give very different expected evolutionary dynamics. In particular, we show that whether or not and to what extent microbes evolve to produce public goods depends strongly on group size. We show that synergy can create an “evolutionary trap” which can stymie the establishment and maintenance of cooperation. By allowing density dependent regulation of production (quorum sensing), we show how this trap may be avoided. We discuss the implications of our results for experimental design
Dialogues of root-colonizing biocontrol pseudomonads
Among biocontrol agents that are able to suppress root diseases caused by fungal pathogens, root-colonizing fluorescent pseudomonads have received particular attention because many strains of these bacteria trigger systemic resistance in host plants and produce antifungal compounds and exoenzymes. In general, the expression of these plant-beneficial traits is regulated by autoinduction mechanisms and may occur on roots when the pseudomonads form microcolonies. Three major classes of antibiotic compounds reviewed here in detail (2,4-diacetylphloroglucinol, pyoluteorin and various phenazine compounds) are all produced under cell population density-dependent autoinduction control acting at transcriptional and post-transcriptional levels. This regulation can either be reinforced or attenuated by a variety of chemical signals emanating from the pseudomonads themselves, other microorganisms or root exudates. Signals stimulating biocontrol factor expression via the Gac/Rsm signal transduction pathway in the biocontrol strain Pseudomonas fluorescens CHA0 are synthesized by many different plant-associated bacteria, warranting a more detailed investigation in the futur
- …
