40 research outputs found

    Autoencoding sensory substitution

    Get PDF
    Tens of millions of people live blind, and their number is ever increasing. Visual-to-auditory sensory substitution (SS) encompasses a family of cheap, generic solutions to assist the visually impaired by conveying visual information through sound. The required SS training is lengthy: months of effort is necessary to reach a practical level of adaptation. There are two reasons for the tedious training process: the elongated substituting audio signal, and the disregard for the compressive characteristics of the human hearing system. To overcome these obstacles, we developed a novel class of SS methods, by training deep recurrent autoencoders for image-to-sound conversion. We successfully trained deep learning models on different datasets to execute visual-to-auditory stimulus conversion. By constraining the visual space, we demonstrated the viability of shortened substituting audio signals, while proposing mechanisms, such as the integration of computational hearing models, to optimally convey visual features in the substituting stimulus as perceptually discernible auditory components. We tested our approach in two separate cases. In the first experiment, the author went blindfolded for 5 days, while performing SS training on hand posture discrimination. The second experiment assessed the accuracy of reaching movements towards objects on a table. In both test cases, above-chance-level accuracy was attained after a few hours of training. Our novel SS architecture broadens the horizon of rehabilitation methods engineered for the visually impaired. Further improvements on the proposed model shall yield hastened rehabilitation of the blind and a wider adaptation of SS devices as a consequence

    Autoencoders for strategic decision support

    Full text link
    In the majority of executive domains, a notion of normality is involved in most strategic decisions. However, few data-driven tools that support strategic decision-making are available. We introduce and extend the use of autoencoders to provide strategically relevant granular feedback. A first experiment indicates that experts are inconsistent in their decision making, highlighting the need for strategic decision support. Furthermore, using two large industry-provided human resources datasets, the proposed solution is evaluated in terms of ranking accuracy, synergy with human experts, and dimension-level feedback. This three-point scheme is validated using (a) synthetic data, (b) the perspective of data quality, (c) blind expert validation, and (d) transparent expert evaluation. Our study confirms several principal weaknesses of human decision-making and stresses the importance of synergy between a model and humans. Moreover, unsupervised learning and in particular the autoencoder are shown to be valuable tools for strategic decision-making

    AudioViewer: Learning to Visualize Sounds

    Full text link
    A long-standing goal in the field of sensory substitution is to enable sound perception for deaf and hard of hearing (DHH) people by visualizing audio content. Different from existing models that translate to hand sign language, between speech and text, or text and images, we target immediate and low-level audio to video translation that applies to generic environment sounds as well as human speech. Since such a substitution is artificial, without labels for supervised learning, our core contribution is to build a mapping from audio to video that learns from unpaired examples via high-level constraints. For speech, we additionally disentangle content from style, such as gender and dialect. Qualitative and quantitative results, including a human study, demonstrate that our unpaired translation approach maintains important audio features in the generated video and that videos of faces and numbers are well suited for visualizing high-dimensional audio features that can be parsed by humans to match and distinguish between sounds and words. Code and models are available at https://chunjinsong.github.io/audioviewe

    Estimation of interaction forces in robotic surgery using a semi-supervised deep neural network model

    Get PDF
    Providing force feedback as a feature in current Robot-Assisted Minimally Invasive Surgery systems still remains a challenge. In recent years, Vision-Based Force Sensing (VBFS) has emerged as a promising approach to address this problem. Existing methods have been developed in a Supervised Learning (SL) setting. Nonetheless, most of the video sequences related to robotic surgery are not provided with ground-truth force data, which can be easily acquired in a controlled environment. A powerful approach to process unlabeled video sequences and find a compact representation for each video frame relies on using an Unsupervised Learning (UL) method. Afterward, a model trained in an SL setting can take advantage of the available ground-truth force data. In the present work, UL and SL techniques are used to investigate a model in a Semi-Supervised Learning (SSL) framework, consisting of an encoder network and a Long-Short Term Memory (LSTM) network. First, a Convolutional Auto-Encoder (CAE) is trained to learn a compact representation for each RGB frame in a video sequence. To facilitate the reconstruction of high and low frequencies found in images, this CAE is optimized using an adversarial framework and a L1-loss, respectively. Thereafter, the encoder network of the CAE is serially connected with an LSTM network and trained jointly to minimize the difference between ground-truth and estimated force data. Datasets addressing the force estimation task are scarce. Therefore, the experiments have been validated in a custom dataset. The results suggest that the proposed approach is promising.Peer ReviewedPostprint (author's final draft

    Grounded Semantic Reasoning for Robotic Interaction with Real-World Objects

    Get PDF
    Robots are increasingly transitioning from specialized, single-task machines to general-purpose systems that operate in unstructured environments, such as homes, offices, and warehouses. In these real-world domains, robots need to manipulate novel objects while adapting to changes in environments and goals. Semantic knowledge, which concisely describes target domains with symbols, can potentially reveal the meaningful patterns shared between problems and environments. However, existing robots are yet to effectively reason about semantic data encoding complex relational knowledge or jointly reason about symbolic semantic data and multimodal data pertinent to robotic manipulation (e.g., object point clouds, 6-DoF poses, and attributes detected with multimodal sensing). This dissertation develops semantic reasoning frameworks capable of modeling complex semantic knowledge grounded in robot perception and action. We show that grounded semantic reasoning enables robots to more effectively perceive, model, and interact with objects in real-world environments. Specifically, this dissertation makes the following contributions: (1) a survey providing a unified view for the diversity of works in the field by formulating semantic reasoning as the integration of knowledge sources, computational frameworks, and world representations; (2) a method for predicting missing relations in large-scale knowledge graphs by leveraging type hierarchies of entities, effectively avoiding ambiguity while maintaining generalization of multi-hop reasoning patterns; (3) a method for predicting unknown properties of objects in various environmental contexts, outperforming prior knowledge graph and statistical relational learning methods due to the use of n-ary relations for modeling object properties; (4) a method for purposeful robotic grasping that accounts for a broad range of contexts (including object visual affordance, material, state, and task constraint), outperforming existing approaches in novel contexts and for unknown objects; (5) a systematic investigation into the generalization of task-oriented grasping that includes a benchmark dataset of 250k grasps, and a novel graph neural network that incorporates semantic relations into end-to-end learning of 6-DoF grasps; (6) a method for rearranging novel objects into semantically meaningful spatial structures based on high-level language instructions, more effectively capturing multi-object spatial constraints than existing pairwise spatial representations; (7) a novel planning-inspired approach that iteratively optimizes placements of partially observed objects subject to both physical constraints and semantic constraints inferred from language instructions.Ph.D
    corecore