14 research outputs found

    Differentiable Programming Tensor Networks

    Full text link
    Differentiable programming is a fresh programming paradigm which composes parameterized algorithmic components and trains them using automatic differentiation (AD). The concept emerges from deep learning but is not only limited to training neural networks. We present theory and practice of programming tensor network algorithms in a fully differentiable way. By formulating the tensor network algorithm as a computation graph, one can compute higher order derivatives of the program accurately and efficiently using AD. We present essential techniques to differentiate through the tensor networks contractions, including stable AD for tensor decomposition and efficient backpropagation through fixed point iterations. As a demonstration, we compute the specific heat of the Ising model directly by taking the second order derivative of the free energy obtained in the tensor renormalization group calculation. Next, we perform gradient based variational optimization of infinite projected entangled pair states for quantum antiferromagnetic Heisenberg model and obtain start-of-the-art variational energy and magnetization with moderate efforts. Differentiable programming removes laborious human efforts in deriving and implementing analytical gradients for tensor network programs, which opens the door to more innovations in tensor network algorithms and applications.Comment: Typos corrected, discussion and refs added; revised version accepted for publication in PRX. Source code available at https://github.com/wangleiphy/tensorgra

    Differentiable programming tensor networks for Kitaev magnets

    Full text link
    We present a general computational framework to investigate ground state properties of quantum spin models on infinite two-dimensional lattices using automatic differentiation-based gradient optimization of infinite projected entangled-pair states. The approach exploits the variational uniform matrix product states to contract infinite tensor networks with unit-cell structure and incorporates automatic differentiation to optimize the local tensors. We applied this framework to the Kitaev-type model, which involves complex interactions and competing ground states. To evaluate the accuracy of this method, we compared the results with exact solutions for the Kitaev model and found that it has a better agreement for various observables compared to previous tensor network calculations based on imaginary-time projection. Additionally, by finding out the ground state with lower variational energy compared to previous studies, we provided convincing evidence for the existence of nematic paramagnetic phases and 18-site configuration in the phase diagram of the KK-Γ\Gamma model. Furthermore, in the case of the realistic KK-JJ-Γ\Gamma-Γ′\Gamma' model for the Kitaev material α\alpha-RuCl3_3, we discovered a non-colinear zigzag ground state. Lastly, we also find that the strength of the critical out-of-plane magnetic field that suppresses such a zigzag state has a lower transition field value than the previous finite-cylinder calculations. The framework is versatile and will be useful for a quick scan of phase diagrams for a broad class of quantum spin models
    corecore