292 research outputs found

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of post-quantum security

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digitalsignature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of postquantum security

    Proving the TLS Handshake Secure (As It Is)

    Get PDF
    International audienceThe TLS Internet Standard features a mixed bag of cryptographic algorithms and constructions, letting clients and servers negotiate their use for each run of the handshake. Although many ciphersuites are now well-understood in isolation, their composition remains problematic, and yet it is critical to obtain practical security guarantees for TLS, as all mainstream implementations support multiple related runs of the handshake and share keys between algorithms.We study the provable security of the TLS handshake, as it is implemented and deployed. To capture the details of the standard and its main extensions, we rely on miTLS, a verified reference implementation of the protocol. We propose new agile security definitions and assumptions for the signatures, key encapsulation mechanisms (KEM), and key derivation algorithms used by the TLS handshake. To validate our model of key encapsulation, we prove that both RSA and Diffie-Hellman ciphersuites satisfy our definition for the KEM. In particular, we formalize the use of PKCS#1v1.5 and build a 3,000-line EasyCrypt proof of the security of the resulting KEM against replayable chosen-ciphertext attacks under the assumption that ciphertexts are hard to re-randomize.Based on our new agile definitions, we construct a modular proof of security for the miTLS reference implementation of the handshake, including ciphersuite negotiation, key exchange, renegotiation, and resumption, treated as a detailed 3,600-line executable model. We present our main definitions, constructions, and proofs for an abstract model of the protocol, featuring series of related runs of the handshake with different ciphersuites. We also describe its refinement to account for the whole reference implementation, based on automated verification tools

    Pairing-based cryptosystems and key agreement protocols.

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed

    New Anonymity Notions for Identity-Based Encryption

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceIdentity-based encryption is a very convenient tool to avoid key management. Recipient-privacy is also a major concern nowadays. To combine both, anonymous identity-based encryption has been proposed. This paper extends this notion to stronger adversaries (the authority itself). We discuss this new notion, together with a new kind of non-malleability with respect to the identity, for several existing schemes. Inter- estingly enough, such a new anonymity property has an independent application to password-authenticated key exchange. We thus come up with a new generic framework for password-authenticated key exchange, and a concrete construction based on pairings

    Two-Message Authenticated Key Exchange from Public-Key Encryption

    Get PDF
    In two-message authenticated key exchange (AKE), it is necessary for the initiator to keep a round state after sending the first round-message, because he/she has to derive his/her session key after receiving the second round-message. Up to now almost all two-message AKEs constructed from public-key encryption (PKE) only achieve weak security which does not allow the adversary obtaining the round state. How to support state reveal to obtain a better security called IND-AA security has been an open problem proposed by Hövelmann et al. (PKC 2020). In this paper, we solve the open problem with a generic construction of two-message AKE from any CCA-secure Tagged Key Encapsulation Mechanism (TKEM). Our AKE supports state reveal and achieves IND-AA security. Given the fact that CCA-secure public-key encryption (PKE) implies CCA-secure TKEM, our AKE can be constructed from any CCA-secure PKE with proper message space. The abundant choices for CCA-secure PKE schemes lead to many IND-AA secure AKE schemes in the standard model. Moreover, following the online-extractability technique in recent work by Don et al. (Eurocrypt 2022), we can extend the Fujisaki-Okamoto transformation to transform any CPA-secure PKE into a CCA-secure Tagged KEM in the QROM model. Therefore, we obtain the first generic construction of IND-AA secure two-message AKE from CPA-secure PKE in the QROM model. This construction does not need any signature scheme, and this result is especially helpful in the post-quantum world, since the current quantum-secure PKE schemes are much more efficient than their signature counterparts
    corecore