2 research outputs found

    Augmenting Robot Knowledge Consultants with Distributed Short Term Memory

    Full text link
    Human-robot communication in situated environments involves a complex interplay between knowledge representations across a wide variety of modalities. Crucially, linguistic information must be associated with representations of objects, locations, people, and goals, which may be represented in very different ways. In previous work, we developed a Consultant Framework that facilitates modality-agnostic access to information distributed across a set of heterogeneously represented knowledge sources. In this work, we draw inspiration from cognitive science to augment these distributed knowledge sources with Short Term Memory Buffers to create an STM-augmented algorithm for referring expression generation. We then discuss the potential performance benefits of this approach and insights from cognitive science that may inform future refinements in the design of our approach.Comment: International Conference on Social Robotics (ICSR) 201

    Toward Forgetting-Sensitive Referring Expression Generationfor Integrated Robot Architectures

    Full text link
    To engage in human-like dialogue, robots require the ability to describe the objects, locations, and people in their environment, a capability known as "Referring Expression Generation." As speakers repeatedly refer to similar objects, they tend to re-use properties from previous descriptions, in part to help the listener, and in part due to cognitive availability of those properties in working memory (WM). Because different theories of working memory "forgetting" necessarily lead to differences in cognitive availability, we hypothesize that they will similarly result in generation of different referring expressions. To design effective intelligent agents, it is thus necessary to determine how different models of forgetting may be differentially effective at producing natural human-like referring expressions. In this work, we computationalize two candidate models of working memory forgetting within a robot cognitive architecture, and demonstrate how they lead to cognitive availability-based differences in generated referring expressions.Comment: Accepted for (nonarchival) presentation at Advances in Cognitive Systems (ACS) 202
    corecore