7,219 research outputs found

    Engineering brain : metaverse for future engineering

    Get PDF
    The past decade has witnessed a notable transformation in the Architecture, Engineering and Construction (AEC) industry, with efforts made both in the academia and industry to facilitate improvement of efficiency, safety and sustainability in civil projects. Such advances have greatly contributed to a higher level of automation in the lifecycle management of civil assets within a digitalised environment. To integrate all the achievements delivered so far and further step up their progress, this study proposes a novel theory, Engineering Brain, by effectively adopting the Metaverse concept in the field of civil engineering. Specifically, the evolution of the Metaverse and its key supporting technologies are first reviewed; then, the Engineering Brain theory is presented, including its theoretical background, key components and their inter-connections. Outlooks of this theory’s implementation within the AEC sector are offered, as a description of the Metaverse of future engineering. Through a comparison between the proposed Engineering Brain theory and the Metaverse, their relationships are illustrated; and how Engineering Brain may function as the Metaverse for future engineering is further explored. Providing an innovative insight into the future engineering sector, this study can potentially guide the entire industry towards its new era based on the Metaverse environment

    Digital Era of Orthodontics: A Review

    Get PDF
    Orthodontic treatment is a complex dental treatment which sometimes requires an interdisciplinary team where different specialists of dental medicine have to manage a vast quantity of data especially in adult orthodontics. In such complicated cases, good diagnostic tools and easy communication are essential. Computer science has an increasing impact in almost every aspect of the orthodontic practice. This review will discuss into the said aspects in the practice of orthodontics as well as evaluate the applications of computer technology in orthodontics like digital photographs, cone beam computed tomography, virtual study models, communication, three-dimensional craniofacial imaging, virtual reality softwares for prediction and treatment planning, video imaging, manufacture of orthodontic appliance, web-based digital orthodontic records and network-attached storage devices

    Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs

    Get PDF
    The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Age-associated Arterial Remodelling and Cardiovascular Diseases

    Get PDF
    Arterial remodelling is a major risk factor for a variety of age-related diseases and represents a potential target for therapeutic development. During ageing, the structural, mechanical and functional changes of arteries predispose individuals to the development of diseases related to vascular abnormalities in vital organs such as the brain, heart, eye and kidney. For example, aortic stiffness increases nonlinearly with advancing age – a few percent prior to 50 years of age but over 70% after 70 years of age. The elevated stiffness in large elastic arteries leads to increased transmission of high pressure to downstream smaller blood vessels, in turn affecting the microcirculation and end-organ functions. Meanwhile, the augmented remodelling of small arteries accelerates central arterial stiffening. This chapter is to provide an overview of age-associated changes in the arterial wall and their contributions to both central and peripheral vascular abnormalities associated with ageing. Therapeutics that specially target the different aspects of arterial remodelling are expected to be more effective than the traditional medications, particularly for the treatment and management of vascular ageing-related diseases.published_or_final_versio

    The 1st Advanced Manufacturing Student Conference (AMSC21) Chemnitz, Germany 15–16 July 2021

    Get PDF
    The Advanced Manufacturing Student Conference (AMSC) represents an educational format designed to foster the acquisition and application of skills related to Research Methods in Engineering Sciences. Participating students are required to write and submit a conference paper and are given the opportunity to present their findings at the conference. The AMSC provides a tremendous opportunity for participants to practice critical skills associated with scientific publication. Conference Proceedings of the conference will benefit readers by providing updates on critical topics and recent progress in the advanced manufacturing engineering and technologies and, at the same time, will aid the transfer of valuable knowledge to the next generation of academics and practitioners. *** The first AMSC Conference Proceeding (AMSC21) addressed the following topics: Advances in “classical” Manufacturing Technologies, Technology and Application of Additive Manufacturing, Digitalization of Industrial Production (Industry 4.0), Advances in the field of Cyber-Physical Systems, Virtual and Augmented Reality Technologies throughout the entire product Life Cycle, Human-machine-environment interaction and Management and life cycle assessment.:- Advances in “classical” Manufacturing Technologies - Technology and Application of Additive Manufacturing - Digitalization of Industrial Production (Industry 4.0) - Advances in the field of Cyber-Physical Systems - Virtual and Augmented Reality Technologies throughout the entire product Life Cycle - Human-machine-environment interaction - Management and life cycle assessmen

    Redox control of multidrug resistance and Its possible modulation by antioxidants

    Get PDF
    Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed
    • …
    corecore