2 research outputs found

    A 'one-size-fits-most' walking recognition method for smartphones, smartwatches, and wearable accelerometers

    Full text link
    The ubiquity of personal digital devices offers unprecedented opportunities to study human behavior. Current state-of-the-art methods quantify physical activity using 'activity counts,' a measure which overlooks specific types of physical activities. We proposed a walking recognition method for sub-second tri-axial accelerometer data, in which activity classification is based on the inherent features of walking: intensity, periodicity, and duration. We validated our method against 20 publicly available, annotated datasets on walking activity data collected at various body locations (thigh, waist, chest, arm, wrist). We demonstrated that our method can estimate walking periods with high sensitivity and specificity: average sensitivity ranged between 0.92 and 0.97 across various body locations, and average specificity for common daily activities was typically above 0.95. We also assessed the method's algorithmic fairness to demographic and anthropometric variables and measurement contexts (body location, environment). Finally, we have released our method as open-source software in MATLAB and Python.Comment: 39 pages, 4 figures (incl. 1 supplementary), and 5 tables (incl. 2 supplementary

    Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data

    No full text
    Physical activity, such as walking and ascending stairs, is commonly used in biomedical settings as an outcome or covariate. Researchers have traditionally relied on surveys to quantify activity levels of subjects in both research and clinical settings, but surveys are subjective in nature and have known limitations, such as recall bias. Smartphones provide an opportunity for unobtrusive objective measurement of physical activity in naturalistic settings, but their data tends to be noisy and needs to be analyzed with care. We explored the potential of smartphone accelerometer and gyroscope data to distinguish between walking, sitting, standing, ascending stairs, and descending stairs. We conducted a study in which four participants followed a study protocol and performed a sequence of activities with one phone in their front pocket and another phone in their back pocket. The subjects were filmed throughout, and the obtained footage was annotated to establish moment-by-moment ground truth activity. We introduce a modified version of the so-called movelet method to classify activity type and to quantify the uncertainty present in that classification. Our results demonstrate the promise of smartphones for activity recognition in naturalistic settings, but they also highlight challenges in this field of research
    corecore