4 research outputs found

    Second-order Shape Optimization for Geometric Inverse Problems in Vision

    Full text link
    We develop a method for optimization in shape spaces, i.e., sets of surfaces modulo re-parametrization. Unlike previously proposed gradient flows, we achieve superlinear convergence rates through a subtle approximation of the shape Hessian, which is generally hard to compute and suffers from a series of degeneracies. Our analysis highlights the role of mean curvature motion in comparison with first-order schemes: instead of surface area, our approach penalizes deformation, either by its Dirichlet energy or total variation. Latter regularizer sparks the development of an alternating direction method of multipliers on triangular meshes. Therein, a conjugate-gradients solver enables us to bypass formation of the Gaussian normal equations appearing in the course of the overall optimization. We combine all of the aforementioned ideas in a versatile geometric variation-regularized Levenberg-Marquardt-type method applicable to a variety of shape functionals, depending on intrinsic properties of the surface such as normal field and curvature as well as its embedding into space. Promising experimental results are reported

    Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes

    Full text link
    In this article, a new method for segmentation and restoration of images on two-dimensional surfaces is given. Active contour models for image segmentation are extended to images on surfaces. The evolving curves on the surfaces are mathematically described using a parametric approach. For image restoration, a diffusion equation with Neumann boundary conditions is solved in a postprocessing step in the individual regions. Numerical schemes are presented which allow to efficiently compute segmentations and denoised versions of images on surfaces. Also topology changes of the evolving curves are detected and performed using a fast sub-routine. Finally, several experiments are presented where the developed methods are applied on different artificial and real images defined on different surfaces

    Augmented Lagrangian method for total variation based image restoration and segmentation over triangulated surfaces

    No full text
    Recently total variation (TV) regularization has been proven very successful in image restoration and segmentation. In image restoration, TV based models offer a good edge preservation property. In image segmentation, TV (or vectorial TV) helps to obtain convex formulations of the problems and thus provides global minimizations. Due to these advantages, TV based models have been extended to image restoration and data segmentation on manifolds. However, TV based restoration and segmentation models are difficult to solve, due to the nonlinearity and non-differentiability of the TV term. Inspired by the success of operator splitting and the augmented Lagrangian method (ALM) in 2D planar image processing, we extend the method to TV and vectorial TV based image restoration and segmentation on triangulated surfaces, which are widely used in computer graphics and computer vision. In particular, we will focus on the following problems. First, several Hilbert spaces will be given to describe TV and vectorial TV based variational models in the discrete setting. Second, we present ALM applied to TV and vectorial TV image restoration on mesh surfaces, leading to efficient algorithms for both gray and color image restoration. Third, we discuss ALM for vectorial TV based multi-region image segmentation, which also works for both gray and color images. The proposed method benefits from fast solvers for sparse linear systems and closed form solutions to subproblems. Experiments on both gray and color images demonstrate the efficiency of our algorithms
    corecore