9,213 research outputs found

    Attribute-Graph: A Graph based approach to Image Ranking

    Full text link
    We propose a novel image representation, termed Attribute-Graph, to rank images by their semantic similarity to a given query image. An Attribute-Graph is an undirected fully connected graph, incorporating both local and global image characteristics. The graph nodes characterise objects as well as the overall scene context using mid-level semantic attributes, while the edges capture the object topology. We demonstrate the effectiveness of Attribute-Graphs by applying them to the problem of image ranking. We benchmark the performance of our algorithm on the 'rPascal' and 'rImageNet' datasets, which we have created in order to evaluate the ranking performance on complex queries containing multiple objects. Our experimental evaluation shows that modelling images as Attribute-Graphs results in improved ranking performance over existing techniques.Comment: In IEEE International Conference on Computer Vision (ICCV) 201

    Automatic document classification and extraction system (ADoCES)

    Get PDF
    Document processing is a critical element of office automation. Document image processing begins from the Optical Character Recognition (OCR) phase with complex processing for document classification and extraction. Document classification is a process that classifies an incoming document into a particular predefined document type. Document extraction is a process that extracts information pertinent to the users from the content of a document and assigns the information as the values of the “logical structure” of the document type. Therefore, after document classification and extraction, a paper document will be represented in its digital form instead of its original image file format, which is called a frame instance. A frame instance is an operable and efficient form that can be processed and manipulated during document filing and retrieval. This dissertation describes a system to support a complete procedure, which begins with the scanning of the paper document into the system and ends with the output of an effective digital form of the original document. This is a general-purpose system with “learning” ability and, therefore, it can be adapted easily to many application domains. In this dissertation, the “logical closeness” segmentation method is proposed. A novel representation of document layout structure - Labeled Directed Weighted Graph (LDWG) and a methodology of transforming document segmentation into LDWG representation are described. To find a match between two LDWGs, string representation matching is applied first instead of doing graph comparison directly, which reduces the time necessary to make the comparison. Applying artificial intelligence, the system is able to learn from experiences and build samples of LDWGs to represent each document type. In addition, the concept of frame templates is used for the document logical structure representation. The concept of Document Type Hierarchy (DTH) is also enhanced to express the hierarchical relation over the logical structures existing among the documents

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches
    corecore